ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

1.	On heating with aqueous alkali	ALCO DESCRIPTION OF THE PROPERTY OF THE PROPER		
		НСООН	c) CH ₃ OH	d) CO ₂ and H ₂ O
2.	A keto ester (A) with molecula			(C.74)
	on boiling with dilute KOH give	1777 (1752 5)		1970
	acidification followed by heating	ng undergoes decarbox	생활하다 하다 입니다 하면 하면 하다 하는 것이 없는데 하다 보다 하다.	ne keto ester (A) is
	a) CH ₃ COCH ₂ CH ₂ COOCH ₃		b) CH ₃ COCH ₂ COOC ₂ H ₅	
	c) CH ₃ CH ₂ OCH ₂ COOCH ₃		d) $CH_3 - COCH(CH_3)COO$	CH ₃
3.	In the reaction, HCHO $+$ NH $_3$	$\rightarrow X, X$ is		
		<i>para-</i> formaldehyde	c) urotropine	d) None of these
4.	$CH_3CH_2 - CHO \xrightarrow{Dil.} product$	a de la companya de		
	The product in the above react	tion is		
	a) CH ₃ CH ₂ COOH		b) CH ₃ CH ₂ - CH ₂ OH	
		СНО	AND THE PROPERTY OF THE PARTY O	-сно
	c) CH ₃ -CH ₂ -CH-CH ₂ -C		d) CH ₃ -CH ₂ -CH-CH OH CH	2
5.	One mole of an organic compo	and requires 0.5 mole	10000 Page 100	3
Э.	생활하다 하나 하는 학교 학교 가는 학교 가는 경우 가는 사람이 되었다.	Ether	c) Ketone	d) Aldehyde
6.	Acetic acid reacts with PCl ₅ to		c) ketolic	a) Aldenyde
o.		CHCl ₂ COOH	c) CH ₃ COCl	d) CH ₃ COOCl
7.	The calcium salt of the final ox			
		Acetaldehyde	c) Acetone	d) Formic acid
8.	Coal-tar is obtained as by prod		ej nectone	a) I of fine dela
0.	a) Destructive distillation of w			
	b) Destructive distillation of co			
	c) Destructive distillation of bo			
	d) None of the above	ones		
9.	CH ₃ COOH and C ₆ H ₅ COOH can	he distinguished by		
,	- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Solubility in water	c) Physical state	d) All of these
10.			ej i lijolear state	a) I'm of these
2000	The reaction >=O+Ph ₃ P=	=CH ₂ produces:		
	a) $\langle -CH_3 \rangle$ b) \langle	\sim CH ₂	c) CH ₃	d) CH ₂ OH
			" \	-3 \
11.	Methylene chloride on hydroly			
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	CH ₃ CHO	c) CH ₃ COCl	d) None of these
12.	СООН			
	Na/NH ₃ /ROH ?			
	Product is			

- 13. Which of the following compounds does not have a carboxyl group?
 - a) Methanoic acid
- b) Ethanoic acid
- c) Picric acid
- d) Benzoic acid

- 14. 2,4-dichlorophenoxy acetic acid is used as a:
 - a) Fungicide
- b) Insecticide
- c) Herbicide
- d) Moth repellent
- 15. Which one of the following is reduced with zinc and hydrochloric acid to give the corresponding hydrocarbon?
 - a) Ethyl acetate
- b) Acetic acid
- c) Acetamide
- d) Butan-2-one
- 16. 3-pentanol on reaction with aluminium tertiary butoxide in the presence of acetone gives
 - a) 3-pentanal
- b) 2-pentanal
- c) 3-pentanone
- d) 2-pentanone

- 17. Bakelite is obtained from phenol by reacting with:
 - a) HCHO
- b) $(CH_2OH)_2$
- c) CH₃CHO
- d) CH₃COCH₃
- 18. The silver salt of a fatty acid on refluxing with an alkyl halide gives an
 - a) Acid
- b) Ester
- c) Ether
- d) Amine

19. In the reaction, P is:

$$CH_3$$
 $CO \xrightarrow{SeO_2} P + Se + H_2CO$

- a) CH3COCHO
- b) CH₃COOCH₃
- c) CH₃COCH₂OH
- d) None of these

Product is

- 21. Which will give Hofmann bromamide reaction?
 - φ CHCONH₂
- b) CH₃CONH₂
- c) H₂NCONH₂
- d) All of these

- 22. Distillation involves all the following processes except:
 - a) Change of state
- b) Boiling
- c) Condensation
- d) Evaporation

- 23. $[A] \stackrel{\text{NaBH}_4}{\longleftarrow} \text{H}_2\text{C} \stackrel{\text{B}_2\text{H}_6/\text{H}_2\text{O}_2}{\bigcirc} \text{OH}^-$
 - [A] and [B] are

c) both
$$H_2C = \left\langle -\right\rangle$$
 —OH

- d) both H₂C

- 24. The reaction,
 - $CH_3CHO + H_2N NH_2 \rightarrow CH_3CH = N \cdot NH_2$ is:
 - a) Elimination
- b) Addition
- 10 II 904 100
- c) Addition-elimination d) None of these

- 25. Which of the following would undergo aldol condensation?

d) HCHO

- a) CCl₃CHO
- b) CH₃—C—CHO c) CH₃CH₂CHO

- 26. Acetalsehyde reacts with:
 - a) Only nucleophiles
 - b) Both electrophiles and nucleophiles
 - c) Only electrophiles
 - d) Only free radicals
- 27. $CH_3CH = CH_2 + CO + H_2O \xrightarrow{H_3PO_4} CH_3 CH COOH CH_3$

This reaction is called

a) The Stevens reaction

b) The carbonylation reactionc

c) The Koch reaction

- d) Oxidation
- 28. Which of the following statement is correct?
 - a) Acidity increases with increase in carbon atoms in carboxylic acids.
 - b) Solubility of carboxylic acid increases with increase in carbon atoms.
 - c) Boiling points of acids are higher than corresponding alcohols.
 - d) None of the above.
- 29. The best reagent to convert pent-3-en-2-ol into pent-3-en-2-one is
 - a) Pyridinium chloro-chromate

b) Chromic anhydride in glacial acetic acid

c) Acidic dichromate

- d) Acidic permanganate
- 30. The catalyst used in Rosenmund reaction is
 - a) Zn/Hg
- b) Pd/BaSO₄
- c) Raney Ni
- d) Na in ethanol

31. Claisen condensation is not given by

- 32. Which of the following is a flavouring agent called 'oil of winter green'?
 - a) Olive oil
- b) Vinegar
- c) Methyl acetate
- d) Methyl salicylate

33. The following reaction is known by the name of:

$$\begin{array}{l} \text{CH}_{3}\text{COCl} + \text{H}_{2} \xrightarrow{\text{[H]}} \text{CH}_{3}\text{CHO} + \text{HCl} \\ \text{Xylene} \end{array}$$

- a) Stephen's reduction
- b) Rosenmund's reaction
- c) Cannizzaro's reaction
- d) None of these
- 34. The enol form of acetone, after treatment with $\mathrm{D}_2\mathrm{O}$ gives
 - $CH_3-C=CH_2$

- 35. $CH_3COOH \xrightarrow{NH_3} \stackrel{\Delta}{\rightarrow} ?$

The product of the reaction is isomeric with

- CH2-CHO
- b) $CH_3CH = NHO$
- c) HCONH CH₃
- d) All of these
- 36. The acid formed when propyl magnesium bromide is treated with CO₂ is:

	a) C ₃ H ₇ COOH	b) C ₂ H ₅ COOH	c) Both (a) and (b)	d) None of these
37.	Tamarind contains	650 xm; m;	T (2005) (2005)	35.0
	a) (+) tartaric acid	b) (-) tartaric acid	c) ± tartaric acid	d) None of the above
38.	The splitting of an ester b	y an alcohol is known as:		
	a) Acidolysis	b) Alcoholysis	c) Ammonolysis	d) Hydrolysis
39.	The product formed when	n hydroxylamine condense	s with a carbonyl compoun	d is called
	a) Hydrazide	b) Oxime	c) Hydrazine	d) Hydrazone
40.	ΦCHO undergoes Claisen	condensation with another	r aldehyde to give cinnama	ldehyde. The aldehyde is
	a) Formaldehyde		b) Acetaldehyde	
	c) Crotonaldehyde		d) Propanaldehyde	
41.	Two mole of acetic acid a	re heated with P2O5. The pr	roduct formed is:	
	a) 2 mole of ethyl alcohol			
	b) Formic anhydride			
	c) Acetic anhydride			
	d) 2 mole of methyl cyani			
42.		ne proteins can be quantita	tively estimated by:	
	a) Carius method			
	b) Kjeldahl's method			
	c) Victor Meyer's method			
0.00	d) Rast method		w w w	
43.		power of the following car		
	a) HCHO > CH ₃ COCH ₃ >		b) CH ₃ COCH ₃ > φCHO >	
4.4	c) HCHO > ϕ CHO > CH ₃	1071	d) CH ₃ COCH ₃ > HCHO >	фСНО
44.	a) HCHO	the following forms lactic a		4) CH CH CHO
15		 b) CH₃COCH₃ with a Grignard reagent given 	c) CH ₃ CHO	d) CH ₃ CH ₂ CHO
45.	a) Alcohol	b) Aldehyde	c) Acid	d) Ketone
46		HCN followed by hydrolys		
10.	a) Optical isomerism			
	b) Geometrical isomerism	1		
	c) Metamerism			
	d) Tautomerism			
47.	Carboxylic acids dissolve	in aq. NaOH because the ac	cids undergo:	
	a) Protonation	b) Deprotonation	c) Carboxylation	d) Decarboxylation
48.	Which of the acids cannot	be prepared by Grignard r	reagent?	
	a) Acetic acid	b) Succinic acid	c) Formic acid	d) All of these
49.	Fillipself File Billipselfore of Barrier property commencer commen	refilting framelijken anne men men men men en 🛶 errefilmint in sammen men	randi Tarania da ran 🛥 Paraniana randian na manana a ara-	ddition compound which on
		$\operatorname{id} B$. The compound B on o	xidation form 3-pentanone	e. Hence, the compound A
	and B are			
		b) Pentanol, 3-pentanol		d) Acetone, 3-pentanol
50.		[10] 보면 10][10] 보호하는 - 102 NEW TOWN MORE WELL (100 HOLD)	compound. (The number o	f carbon atom remains the
	same throughout the read	ction.)		
	CH ₃	10 011-		
	dil. KMnO ₄ ►A H	$\rightarrow B \xrightarrow{OH}$		
	CH₃			
	O II	∠CHO	сно	CHO
	a) 📉	b) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	c) (d) CHO
	· []	CH ₃		", 🔰
	✓ CH ₃	: D.13 M	СНО	

CLICK HERE >>>

E4	1	1 11 00 1		
51.	Lactic acid on heating wit		a) Aamilia aaid	d) Duonionio acid
F 2	a) Acetic acid	b) Formic acid	c) Acrylic acid	d) Propionic acid
52.	Urea can be detected by	b) Maliash taat	a) Nimbudaina taat	J) Diameter bank
E2	a) Benedict test	b) Molisch test	c) Ninhydrine test	d) Biurate test
55.	a) Acetaldehyde	b) Formalin	pitate with Fehling's solution	
54	Which of the following sta		c) D-glucose	d) Acetone
54.	a) Formic acid is stronger			
	맛, 말맞지않아 하다 맛있다. 하다 아마나 아이들은 하나 사내의 아마리를 하셨다면 하나 하는데 한국에 다른	s weaker than <i>o-</i> chloroben	zoic acid	
		swer the silver mirror test		
	-	t reduce Fehling's solution		
55	5	hich formic and acetic acid		
00.	a) Sodium replaces hydro			
	b) Forms esters with alco	[1] - [1] -		
	보고 있다면 하는 하는 것이 되었었다. 그는 하는		Fehling's solution of dil. ac	rid KMnO ₄
	d) Turns red litmus blue		aan een statuur 🗣 en teraasa ta arteilasti vähet arvasti hellatalasta on ee	ensinga and an area of the second
56.	An organic substance from	n its aqueous solution can	be separated by:	
	a) Solvent extraction	b) Steam distillation	c) Distillation	d) Fractional distillation
57.	The strongest acid among	st the following compound	ds is	
	a) CH ₃ COOH	b) HCOOH	c) CH ₃ CH ₂ CH(Cl)CO ₂ H	d) ClCH ₂ CH ₂ CH ₂ COOH
58.	What is obtained what ac	etyl chloride is heated witl	n benzene in presence of an	hydrous AlCl ₃
	a) Acetyl benzoic acid	b) Anisol	c) Acetonephenone	d) Chlolorobenzene
59.	Reaction of formaldehyde			
	a) Hexamethylene tetram	nine	b) Bakelite	
	c) Urea	1 12 12 20	d) Triethylene tetramine	
60.		nic acid reacts with sodium		200 N
	CH₃ ↓	COONa	ососн₃	SO₃Na ↓
	a) CH ₃ COOH	b) O + SO ₃	c) +SO ₃	d) + NaOH
	") 💙	")	c) 💙 ~~,	4)
	SO₃Na	ι CH₃	CH ₃	CH ₃
61.	An acyl halide is formed	when PCl ₅ reacts with an:		
	a) Acid	b) Alcohol	c) Amine	d) Ester
62.	Generally it is more diffic	ult to purify organic compo	ounds than inorganic comp	ounds because:
	a) They are very unstable			
	b) Their m. p. and b. p. are	e low		
	c) Organic compounds ha	10 Fig. 10 Fig.		
		rganic compounds and the	impurities associated with	them are very close to each
	other		in a transfer of the contract	
63.		converted to ethylbenzen	- 7	D.B. W. McI
61	a) LiAlH ₄	b) H ₂ NOH	c) Pd/BaSO ₄ – H ₂	d) Zn – Hg/HCl
64.	gg - and and the first of the particle of the property of the particle of the	eated with aqueous sodiur	n dicardonate, CO ₂ is libera	ited. The C from CO ₂ comes
	from			
	a) Mothyl group		h) Carbourdia agid group	
	a) Methyl group		b) Carboxylic acid group	
65	c) Methylene group	ic acid are	b) Carboxylic acid group d) Bicarbonate	
65.	c) Methylene group Boiling points of carboxy			
65.	c) Methylene group Boiling points of carboxy a) Lower than correspond	ding alcohols		
65.	c) Methylene group Boiling points of carboxyl a) Lower than correspond b) Higher than correspond	ding alcohols ding alcohols		
65.	c) Methylene group Boiling points of carboxy a) Lower than correspond	ding alcohols ding alcohols		

- 66. The —COOH group in a carboxylic acid can be replaced by 'H' by heating the acid with:
 - a) Zn with HCl
 - b) H₂ in presence of nickel
 - c) Sodalime
 - d) Bromine and concentrated aqueous alkali
- 67. The product obtained in the reaction

- d) There is no reaction
- 68. Which of the following would produce secondary alcohol?
 - a) $C_6H_5COCH_3 \xrightarrow{1. CH_3MgBr}$
 - b) $C_6H_5COCH_3 \xrightarrow{1. \text{LiAlH}_4}$
 - c) $C_6H_5CHO \xrightarrow{1. CH_3MgBr}$
 - d) $CH_3CHO \xrightarrow{1. LiAlH_4}$
- 69. Which factor/s will increase the reactivity of >C=0 group?
 - I. Presence of a group with positive inductive effect.
 - II. Presence of a group with negative inductive effect.
 - III. Presence of large alkyl group.
 - a) Only (i)
- b) Only (ii)
- c) (i)and(iii)
- d) (ii) and (iii)

70. CH₃CH₂CH₂COOH Red P/Br₂ CH₃CH₂CH−COOH Br

This reaction is called the

a) Cannizaro reaction

- b) Schrodinger reaction
- c) Hell-Volhard-Zelinsky reaction
- d) Reimer-Tiemann reaction
- 71. $(CH_3)_2C=CHCOCH_3$ can be oxidised to $(CH_3)_2C=CHCOOH$ by:
 - a) Cu at 300°C
- b) KMnO₄
- c) Chromic acid
- d) NaOI
- 72. The correct order of decreasing boiling points of CH3CONH2 (A), CH3COCI (B), CH3COOH (C) and $(CH_3CO)_2O(D)$ is:
 - a) A > D > C > B
- b) A > B > C > D c) D > C > B > A
- d) None of these

73. Rate of reaction,

$$R - C <$$
 $^{\circ}$
 $^{\circ$

is fastest when Zis

- b) NH₂
- c) OC₂H₅
- 74. Which is useful for separating benzoic acid from a mixture of benzoic acid and methyl benzoate?

	a) $NaHCO_3(aq.)$	b) Dil. HCl	c) Dil. H ₂ SO ₄	d) Dil. HNO ₃
75.	The compound X, in the re			
	$X \xrightarrow{CH_3CHO} Y \xrightarrow{Hydrolysis} \mathbb{N}$			
	a) CH ₃ CHO	b) CO ₂	c) $(CH_3)_2CO$	d) HCHO
76.	350	es not undergo polymeriza		
	a) CH ₃ CHO	b) HCHO	c) CH ₃ COCH ₃	d) None of these
77.	The reaction,			
	$RCOOAg + Br_2 \xrightarrow{CCl_4} RBr$	+ $AgBr + CO_2$ is called:		
	a) HVZ reaction	b) Hunsdiecker reaction	c) Hofmann's reaction	d) Carbylamine reaction
78.	Methyl ketones are chara-	cterised through:		
	a) The Tollen's reagent			
	b) The iodoform test			
	c) The Schiff's test			
	d) The Benedict's reagent			
79.	157	ontains Y and Z impurities	. Their solubility differs sli	ghtly. They may be
	separated by:			
	a) Simple crystallization			
	b) Fractional crystallization	on		
	c) Sublimation			
00	d) Fractional distillation		N OU CH 11	
80.		actants on reaction with co	onc. NaOH followed by acid	ification gives following
	lactone as the product			
	Ĭ			
	C			
	CH ₂		2000	
	COOCH ₃	СООН	СНО	COOH
	a) [) [b) [()]	c) [()]	d) [()]
	СООН	СНО	CHO	COOH
81.	8 5	35 (SS) (SS)	eated with excess of CH ₃ M	5 t
		그리하다 하다 가게 된 것이 되지하다 하는 그 아이들은 사람들은 아이들은 사람들이 되었다. 기다	. Ozonolysis of (B) gave a k	etone with molecular
		vs positive iodoform test. T		
	a) C ₆ H ₅ COOC ₂ H ₅		b) C ₆ H ₅ COOC ₆ H ₅	••
02	c) C ₆ H ₅ COOCH ₃	1	d) p -H ₃ CO $-$ C ₆ H ₄ $-$ COC	Н3
82.	Acetone reacts with Grign a) 3° alcohol	b) 2° alcohol	a) Ethan	d) No reaction
02		. 148	 c) Ether apours evolved will be rich 	d) No reaction
03.	a) Kerosene	b) Petroleum ether	c) Diesel	d) Lubrication oil
84	Decarboxylation of malon		c) blesei	u) Eubrication on
O 1.	a) CH ₄	b) CH ₃ COOH	c) Both (a) and (b)	d) None of these
85.	What is the product in the	15 T	e) both (a) that (b)	a) Hone of these
	$CH_3CONH_2 \xrightarrow{NaOH_2/HCl} X$			
	$CH_3CONH_2 \longrightarrow \lambda$			
	a) CH ₃ COOH	b) + CH ₃ CONH ₃ Cl ⁻	c) CH ₃ NH ₂	d) CH ₃ CHO
86	Which of the following su		r the replacement of —OH	group in organic
50.	compounds by Cl?	Dominios daminos de adea 10	replacement of Off	P. oah III or Panie
	a) S ₂ Cl ₂	b) SOCl ₂	c) PCl ₃	d) PCl ₅
87.		hen acetic anhydride reac		1
	च शहर च शहर व र्ष र च नाहर कर किस्ति है के हैं है । विशेष की किस्ति है किस्ति है की किस्ति है किस्ति है किस्ति है की किस्ति है किस्ति है की किस्ति है		90 (10 OLF GEST)	

a) Nitrogen pentoxide b) Nitric acid c) Nitrous acid d) Potassium nitrate 88. Which one is not prepared from tartaric acid? c) Fehling's solution a) Tartar emetic b) Fenton's reagent d) Rochelle salt 89. The reagent used in Clemmensen's reduction is a) Conc. H₂SO₄ b) Zn-Hg/conc.HCl c) aq. KOH d) alc.KOH In the reaction, $C_6H_5COOH + CH_{3O}^*H \xrightarrow{*} Ester + water$ Isotopically labeled oxygen (0^{18}) is present in a) water b) 0¹⁸ is present with ester c) 018 shifts from acid to alcohol d) No reaction takes place 91. The technique of gas chromatography is suitable for compounds which are: a) Liquids b) Highly volatile c) Soluble in water d) Vaporise without decomposition 92. There are several criteria of purity of organic compounds. Which is considered to be the best? a) Melting point b) Mixed melting point c) Colour d) Microscopic examination 93. ϕ CHO + NH₃ \rightarrow ? Product is 94. The ease of hydrolysis with an alkali in the compounds CH3COCI $CH_3CO - O - COCH_3$ I CH3COOC2H5 CH₃CONH₂ Ш IV Is of the order a) I>II>III>IV b) IV>III>II>I c) I>II>IV>III d) II>I>IV>III 95. What is the formula of adipic acid? b) CH₂(COOH)CH₂COOH c) COOH(CH₂)₃COOH a) COOH(CH₂)₄COOH d) None of the above 96. CH₃CHO and C₆H₅CH₂CHO can be distinguished chemically by: a) Tollen's reagent test b) Fehling solution test c) Benedict test d) Iodoform test 97. Acrolein on complete reduction gives: a) Allyl alcohol b) Propanol c) Propanal d) None of these 98. Identify the starting material of the following reaction 99. Which one of the following is not a fatty acid? a) Stearic acid c) Oleic acid d) Phenyl acetic acid b) Palmitic acid 100. $CH_3CN \xrightarrow{H_2O} A$ diazomethane A and B are a) Acetamide, N-methyl acetamide b) Acetic acid, ethyl ethanoate c) Acetic acid, methyl acetate d) Acetamide, acetone

101. Tartronic acid is obtained from tartaric acid by:

+ CH_2 =CHCOOH $\stackrel{\triangle}{\longrightarrow}$?

102.

- c) Tollen's reagent
- d) PCl₅

Product is

- 103. A compound, containing only carbon, hydrogen and oxygen, has a molecular weight of 44. On complete oxidation it is converted into a compound of molecular weight 60. The original compound is
 - a) An aldehyde
- b) An acid
- c) An alcohol
- d) An ether
- 104. Which of the following reagents is useful for separating aniline from a mixture of aniline and nitrobenzene?
 - a) NaOH(aq.)
- b) H₂O
- c) NaHCO₃(aq.)
- d) HCl(aq.)

- 105. How will you separate a miscible mixture of $C_6H_6 + CHCl_3$?
 - a) Sublimation
- b) Filtration
- c) Distillation
- d) Crystallization
- 106. An organic compound has C and H percentage in the ratio 6:1 and C and O percentage in the ration 3:4. The compound is:
 - a) HCHO
- b) CH₃OH
- c) CH₃CH₂OH
- d) (COOH)₂
- 107. Potassium cyanate is heated with ammonium sulphate. The product formed is
- b) Ammonia
- c) Potassium sulphate
- d) Ammonium cyanide

- 108. 2-pentanone and 3-petanone can be distinguished by
 - a) Cannizaro's reaction

b) Aldol condensation

c) Iodoform reaction

- d) Clemmensen's reduction
- 109. Acetyl bromide reacts with excess of CH3MgI followed by treatment with a saturated solution of NH4Cl gives
 - a) Acetone
- b) Acetamide
- c) 2-methyl-2-propanol
- d) Acetyl iodide

- 110. Formalin is
 - a) Solution of fructose

b) 40% aq. sol. Of HCHO

c) 40% HCHO + 60% CH₃CHO

d) None of the above

- 111. Aldol condensation is given by
 - a) Trimethylacetaldehyde

b) Acetaldehyde

c) Benzaldehyde

- d) Formaldehyde
- 112. Which reaction is used for detecting the presence of carbonyl group?
 - a) Reaction with hydrazine
 - b) Reaction with phenyl hydrazine
 - c) Reaction wit hydroxylamine
 - d) All of the above
- 113. The product obtained in the reaction

$$CH_3CH_2CO_2H \xrightarrow{Cl_2/P} is$$

- b) CICH2CH2CO2H
- c) CH₃-C-CO₂H
- d) Cl₂CHCH₂CO₂H
- 114. An organic compound contains carbon, hydrogen and oxygen. Its elemental analysis gave, C, 38.71% and H, 9.67%. The empirical formula of the compound would be:
 - a) CH₂O
- b) CHO
- c) CH₄O
- d) CH_3O

^{115.} CH₃COCl
$$\xrightarrow{\text{Pd/BaSO}_4}$$
 A

The isomers of CH₃COCl and A will be respectively

a) CH2ClCHO, oxirane

- b) Chloral, vinyl alcohol
- c) α -chloro ethyl alcohol, epoxy ethane
- d) None of the above
- 116. Acid chlorides react with Grignard's reagents to give:
 - a) Esters
- b) Ethers
- c) Carbonyl compounds
- d) None of these

- 117. Which of the following give an explosive RDX, on nitration?
 - a) Toluene
- b) Benzene
- c) Guanidine
- d) Urotropine
- 118. The conversion of —COOH group to —NH₂ group can be made by:
 - a) Wurtz reaction
- b) Claisen condensation c) Stephen's reduction
- d) Schmidt reaction

- 119. In question 178 step (2) can be thought of an/a:
 - a) Neutralization
 - b) Electrophilic attack at the carbonyl carbon
 - c) Nucleophilic attack of N-lone pair at the carbonyl carbon leading to substitution
 - d) Nucleophilic addition reaction
- 120. Acetaldehyde forms a white crystalline precipitate on mixing with asolution of
 - a) Acidic, Zn Hg

b) Alcoholic, Na₂SO₃

c) Saturated aqueous, NaHSO₃

d) Aqueous, NaCl

- 121. Fehling's solution is:
 - a) Acidified copper sulphate solution
 - b) Ammoniacal cuprous chloride solution
 - c) Copper sulphate, Rochelle salt + NaOH
 - d) None of the above
- 122. Stephen's reduction is used to prepare aldehyde from
 - a) Alcohol
- b) Alkyl cyanides
- c) Alkanones
- d) Acid chlorides

- 123. Benzyl alcohol can be prepared from benzaldehyde by
 - a) Friedel-Craft's reaction

b) Cannizaro's reaction

c) Kolbe's reaction

- d) Reimer-Tiemann reaction
- 124. The mechanism of ester formation in acidic medium is as follows

$$R$$
-C-OH $\frac{H^+}{\text{Step (i)}}$

$$\begin{array}{c|c}
R-C-OH & \longrightarrow R-C-OH \\
+R'OH;-H^+ & | & | & | \\
\hline
Step (ii) & R-C-OH \\
\hline
OR'
\end{array}$$

$$\underbrace{\frac{\text{H}^{+}}{\text{Step (iii)}}}_{\text{HOH}} R - \underbrace{\frac{\text{-H}_{2}\text{O}}{\text{-OH}}}_{\text{Step (iv)}} \underbrace{\frac{\text{-H}_{2}\text{O}}{\text{Step (iv)}}}_{\text{-}}$$

$$R - C - OR' \xrightarrow{HO^+} R - C - OR'$$

The slowest step in the above mechanism is

- a) Step (i)
- b) Stem (ii)
- c) Step (iii)
- d) Step (iv)

125. Ammonolysis of an ester gives:

a) Amine	b) Amide	c) Uride	d) None of these
	can agaily be prepared by	,	

- 126. Acetic anhydride can easily be prepared by:
 - a) Distilling a mixture of anhydrous sodium acetate and acetyl chloride
 - b) Heating acetic acid
 - c) Partial hydrolysis of acetyl chloride
 - d) Oxidation of ethanol
- 127. When one of the following hydrocarbons is burnt in excess of oxygen, the volume of CO2 evolved is just double to that of hydrocarbon taken. The hydrocarbon is:
- a) CH₄ b) C₂H₆ c) C_3H_8 d) C_3H_6

- $CH_3CH_2COOH \xrightarrow{NH_3} X \xrightarrow{Br_2+KOH} Y \xrightarrow{HNO_2} Z;$
- b) CH₃CH₂NH₂ a) CH₃OH
- c) CH₃CH₂OH
- d) CH₃CH₂CH₂OH
- 129. Arrange the following carboxylic acids in order of decreasing acidity

Oxalic acid Malonic acid Succinic acid I II III I b) III c) I a) III II III II I Ш >

- 130. Oppenauer oxidation is the reverse process of:
 - a) Wolff-Kishner's reduction
 - b) Rosenmund's reduction
 - c) Clemmensen's reduction
 - d) Meerwein-Ponndorf Verley reduction
- 131. Indicate the organic structure for product expected when 2-methyl propene is heated with acetyl chloride in presence of anhydrous ZnCl2:

- 132. A mixture of benzaldehyde and formaldehyde on heating with aqueous NaOH solution gives
 - a) Benzyl alcohol and sodium formate
- b) Sodium benzoate and methyl alcohol
- c) Sodium benzoate and sodium formate
- d) Benzyl alcohol and methyl alcohol

133. Identify X;

$$H_3C-C=O \xrightarrow{CH_3MgI} A \xrightarrow{H_2O} X$$

- c) CH₃CHOHCH₃
- d) $CH_3C(OH)(CH_3)_2$

134. $X \xrightarrow{\text{Conc.NaOH}} \text{Furoic acid} + \text{Furyl alcohol.}$

Compound X is

135. Decarboxylation of which will yield 1,1,2,2-tetra bromoethane:

- a) CH₃COOH
- b) CH₂BrCBr₂COOH
- c) HCBr2CBr2COOH
- d) CH₂BrCHBrCOOH

136. Fehling's solution is used in the detection of:

- a) Ketonic group
- b) Alcoholic group
- c) Aldehydic group
- d) Carboxylic group

137.
$$RCOOH + N_3H \xrightarrow{H_2SO_4} RNH_2 + CO_2 + N_2$$

The above reaction is called:

- a) HVZ reaction
- b) Hunsdiecker reaction
- c) Schmidt reaction
- d) Decarboxylation reaction
- 138. Butanol on reaction with one of the following will produce banana odour:
 - a) PCl₅
- b) CH₃COCl
- c) CH₃OCH₃
- d) NH₃

139. CHO $\xrightarrow{\text{OH}^{-}} X$; the product X is :

- a) $CH_3OH + CH_3OH$
- b) CH2OH-COO-
- c) CH₃OH +HCOOH
- d) 00C-C00-
- 140. Some organic compounds are purified by distillation at low pressure because the compounds are:
 - a) Low boiling liquids
 - b) High boiling liquids
 - c) Highly volatile
 - d) Dissociated before reaching their boiling points
- 141. A compound `A' has a molecular formula C₂Cl₃OH. A reduces Fehling solution and on oxidation produces a monocarboxylic acid B. A can also be obtained by the action of Cl₂ on ethanol. A is
 - a) Chloral
- b) CHCl₃
- c) CH₃Cl
- d) Chloroacetic acid

142. Predict the products in the given reaction.

143. In the scheme given below, the total number of intramolecular aldol condensation products formed from

$$\underbrace{\begin{array}{c} \text{(i) O}_{3} \\ \text{(ii) Xn, H}_{2}\text{O} \end{array}}_{} Y \underbrace{\begin{array}{c} \text{(i) NaOH(aq)} \\ \text{(ii) heat} \end{array}}_{}$$

a) 1

c) 3

d) 4

144. Calcium propanoate on refluxing yields:

a) Propanol-2

b) Propanone-2

c) Pentanone-3

d) Pentanone-2

145. When a mixture of one mole of benzoic acid and one mole of phenol in water is treated with one mole of NaHCO3, the product formed will consist of

a) φCOOH + φONa

b) φCOONa + φONa

c) φCOONa + φOH

d) ϕ COO ϕ + ϕ COOCO ϕ

146. Aldehyde not showing Cannizaro's reaction is

a) Paraldehyde

b) Chloral

c) Formaldehyde

d) Acetaldehyde

147. Compound (A) (molecular formula C₃H₈O) is treated with acidified potassium dichromate to form a product B (molecular formula C₃H₆O).'B' forms a shining silver mirror on warming with ammonical silver nitrate. 'B' when treated with an aqueous solution of H2NCONHNH2. HCl and sodium acetate gives a product 'C'. Identify the structure of 'C'.

a) $CH_3CH_2CH = NNHCONH_2$

b) $(CH_3)_2C = NNHCONH_2$

c) $(CH_3)_2C = NCONHNH_2$

d) $CH_3CH_2CH = NCONHNH_2$

148. Methyl cyanide can be converted into acetic acid by:

a) Reduction

b) Hydrolysis

c) Electrolysis

d) Decarboxylation

149. A product obtained by the reaction of X with hydroxylamine and on further reduction gives

$$H$$
 NH_2 C_2H_5 C $C(CH_3)_3$. Hence, the compound X can be

a) 2,2-dimethyl-3-pentanone

b) 3,3-dimethyl-3-butanone

c) 1-methyl-3-pentanone

d) Diethyl ketone

150. The main reason for the fact than carboxylic acids can undergo ionization is:

a) Absence of α-H-atom

b) Resonance stabilization of carboxylate ion

c) High reactivity of α-H-atom

d) Hydrogen bonding

151. Acetamide reacts with maximum ease with:

a) C₂H₅OH

b) $C_2H_5NH_2$

c) H₂O

d) aq. NaOH

152. Formalin is the commercial name of

a) Formic acid

b) Fluroform

c) 40% aqueous solution of methanal

d) para formaldehyde

153. Which of the following carboxylic acids is not reduced to the corresponding 1° alcohol byLiAlH₄?

a) BrCH2CH2CH2COOH

b) Cyclohexane carboxylic acid

d) CH3CH(CH3)CH2COOH

c) $(Z) - CH_3CH = CHCH_2COOH$ 154. The weakest acid amongst the following is

a) CICH2COOH

b) HCOOH

c) FCH2CH2COOH

d) CH₂(I)COOH

155. Identify (X) in the sequence,

 $C_4H_7OC1 \xrightarrow{NH_3} C_4H_9ON \xrightarrow{Br_2/KOH} CH_3CH_2CH_2NH_2$:

a)
$$CH_3$$
 $CH-COCI$ CH_3 $CH_2-CH-CH_2$ OH CI OH CI

c) CH₃—CH₂—CH₂—COCl

d) OHC-CH2-CH2-CH2-CI

156. Which compound is oxidised to prepare ethyl methyl ketone?

a) Propanol-2

b) Butanol-1

c) Butanol-2

d) Tert-butyl alcohol

157. The product obtained in the reaction

$$\begin{array}{c|c}
O \\
\parallel \\
O \\
O \\
O \\
\end{array}$$

$$\begin{array}{c}
O \\
\parallel \\
O \\
O \\
\end{array}$$

$$\begin{array}{c}
O \\
Heat \\
\bullet \\
\end{array}$$

c) RCH = CHCOOH

d) None of the above

158.

Here, A is

d) Reaction not possible

159. Acetone is treated with excess of ethanol in the presence of hydrochloric acid. The product obtained is:

160. When acetaldehyde is heated with Fehling's solution, it gives a red precipitate of:

- c) $Cu + Cu_2O + CuO$
- d) Cu₂O

161. Simple distillation can be used to separate:

a) A mixture of benzene (b. p. 80 °C) and toluene (b. p. 110°C)

	b) A mixture of ether (b. p. 35°C) and toluene (b. p. 110°C)					
	c) A mixture of ethanol (b. p. 78°C) and water(b. p. 100°C)					
	d) None of the above 2. Acetyl bromide reacts with excess of CH ₃ MgI followed by treatment with a saturated solution of NH ₄ Cl					
162.		th excess of CH ₃ MgI follower	ed by treatment with a satu	irated solution of NH ₄ Cl		
	gives	1.50		75. 4. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.		
	a) Acetone	b) Acetamide	c) 2-methyl-2-propanol			
163.		een the following compoun	ds followed by dehydration	n gives methyl vinyl ketone:		
	a) HCHO and CH ₃ COCH ₃					
	b) HCHO and CH ₃ CHO					
	c) Two molecules of CH ₃ 0					
	d) Two molecules of CH ₃ 0					
164.	$R - CH_2 - CH_2OH$ $R - CH_2 - CH_3 - H$ can b	e converted into The corre	ct sequence of reagent is,			
	a) KCN, H ⁺	b) PBr ₃ , KCN, H ₂	c) HCN, PBr ₃ , H ⁺	d) PBr, KCN, H ⁺		
165.	The acid which does not f	orm an anhydride when tro	eated with P ₂ O ₅ is:			
	a) Formic acid	b) Acetic acid	c) Propionic acid	d) Benzoic acid		
166.	Prior to the seventeenth	century people knew the pr	ocesses except:			
	a) Dyeing	b) Preparation of wines	c) Organic synthesis	d) Fermentation		
167.	Molecular weight of aceti	c acid is 60. Its empirical fo	rmula is:			
	a) CH ₂ O	b) C ₂ H ₄ O ₂	c) $C_3H_6O_3$	d) $C_2H_4O_3$		
168.	Ketones can be obtained i	in one step by:				
	a) Hydrolysis of ester					
	b) Oxidation of primary a	lcohols				
	c) Reaction of acid halide					
	d) Oxidation of secondary	alcohol //				
169.	The scientist who gave ch	romatography concept:				
	a) Berzelius	b) Avogadro	c) Tswett	d) Lavoisier		
170.	그리고 있었다. 이번 그리고 맛있는 그 그 있다가 그 그 그래요 그래요 그리고 있다. 그리고 그리고 있다.	nis conversion is known as				
	a) Arndt-Eistert reaction		b) Favorskii reaction			
	c) Mannich reaction		d) Schmidt reaction			
171.		ction will be most favoured	d in:			
	a) CH ₃ CH ₂ CHO					
	b) CH ₃ CHO					
	c) CH ₃ · CH ₂ · CH ₂ COCH ₃					
172	d) (CH ₃) ₂ C=0	ound containing C H and O	on combustion violded 0	147 c CO and 0.12 c water		
1/2.	The percentage of oxygen		on combustion yielded 0.	$147 \mathrm{~g~CO}_2$ and $0.12 \mathrm{~g~water}$.		
	a) 73.34%	b) 78.45%	c) 83.23%	d) 89.50%		
173		with Fehling's solution to g	· ·			
1/3.	precipitate with Fehling's	그리아 선물이 있는 것 같아. 이 맛이 하면 17대 아이는 아이는 이 아이를 하는 것이 하네요.	give red ppt. but benzaiden	yue does not produce red		
	a) Of a bulky ring, —CHO					
		n of benzaldehyde is difficu	ılt			
	c) —CHO is present in cyc		•••			
	d) Of all the above statem					
174.		engths in carboxylate ions	are due to:			
	a) Resonance	0				
	b) Presence of carbonyl g	roup				
	c) Presence of alkyl group					
	d) None of the above					
175.	75. Which one of following can be oxidised to the corresponding carbonyl compound?					

CLICK HERE >>>

a) 2-hydroxypropane	b) Ortho-nitrophenol	
c) Phenol	d) 2-methyl-2-hydroxyp	ropane
176. A compound does not react with 2, 4 dinitropheny	l hydrazine, compound is	
a) Acetone b) Acetaldehyde	c) CH ₃ OH	d) CH ₃ CH ₂ COCH ₃
177. When CH ₃ COOH reacts with CH ₃ - MgX		
a) CH ₃ COX is formed	b) Hydrocarbon is forme	d
c) Acetone is formed	d) Alcohol is formed	
178. 13 g of a hydrocarbon contains 1.0 g of hydrogen. I	ts formula is:	
a) C_2H_2 b) C_2H_3	c) C ₃ H ₄	d) C ₄ H ₇
179. 2-pentanone and 3-pentanone can be distinguished	d by one of the following:	
a) Tollen's reagent b) Fehling's solution	c) Schiff's test	d) Iodoform test
180. Ethyl acetate is obtained by acetaldehyde in one st	ep process by	
 a) Condensation using Ba(OH)₂ 	b) Using aluminium etho	xide
c) Oxidation	d) Reduction	
181. On reaction with hydroxylamine, aldehydes production	ce	
a) Ketoxime b) Hydrazone	c) Semicarbazone	d) Aldoxime
182. The solvent which can dissolve all the carboxylic a	cids is:	
a) Water b) Dilute HCl	c) Conc. H ₂ SO ₄	d) Dilute NaOH
183. 0.759 g of a silver salt of a dibasic organic acid on i	gnition left 0.463 g metallic	silver. The equivalent
weight of acid is:		
a) 70 b) 108	c) 60	d) 50
184. Acetone and acetaldehyde can be distinguished by		
a) Molisch test b) Tollen's test	c) Schiff's test	d) Iodoform test
185. Hydroxamic acid test is employed to detect		
a) Ketones b) Aldehydes	c) Esters	d) amides
186. When $CH_2 = CH - COOH$ is reduced with LiAlH ₄ , t	he compound obtained will	be
a) $CH_3 - CH_2 - COOH$ b) $CH_2 = CH - CH_2OH$	c) CH ₃ CH ₂ CH ₂ OH	d) CH ₃ CH ₂ CHO
187. Conversion of benzaldehyde to 3-phenylprop-2-en	-1-oic acid is	
a) Perkin condensation b) Claisen condensation	c) Oxidative addition	d) Aldol condensation
188. Dry distillation of calcium formate and subsequent	treatment with conc KOH g	ives the mixture of
a) CH ₃ OH, HCOOK b) CH ₃ CHO, HCOOK	c) HCHO, HCOOK	d) None of these
189. The main component of oil of winter green is		
a) Salicylic acid b) Methyl salicylate	c) Acetyl salicylic acid	d) salicylaldehyde
190. Acetic acid is manufactured by the fermentation of	6 및 1월 55 * *	
a) Ethanol b) Methanol	c) Ethanal	d) Methanal
191. Which is/are hydroxy acid (s)?		
a) Lactic acid b) Tartaric acid	c) Citric acid	d) All of these
192. When cyclohexanone is treated with N_3H (hydrazo	oic acid)	
a) Caprolactum is obtained	b) Caprolactone is obtain	ned
c) Caproserum is obtained	d) No reaction	
193. Which of the following will not give cyclic products	upon being heated or being	g treated by an acid?
Ö	Ö	
а) CH ₃ CHCH ₂ CH ₂ COH	, CH ₂ CH ₂ CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH	ЭН
	b) CH ₃ CH ₂ CHCH ₂ CH ₂ Co I OH	
ÓН	ОН	
0		0
	OH OH OH OH OH	
c) CH ₃ CH ₂ CH ₂ CHCH ₂ COH	d) CH ₃ CH ₂ CH ₂ CH ₂ CH	COH
ÓН	он	

194. $CH_3CHO + CO_2(COOH)_2 \xrightarrow{Pyridine} X; X \text{ is:}$

- a) CH3COOH
- b) C2H5COOH
- c) CH₃CH=CHCOOH
- d) (COOH)CH=CH(COOH)

195. The most suitable reagent for the conversion of primary alcohol into aldehyde with the same number of carbon is

a) Acidified K2Cr2O7

b) Acidified KMnO₄

c) Alkaline KMnO₄

d) Pyridinium chlorochromate

196. Give the order of ease of decarboxylation of the following acids

CH3COOH CH2=CH-CH2COOH CH2(COOH)2

$$O_2N$$
—COOH

C

- a) I > II > III > IV
- b) III > IV > II > I
- c) IV > III > II > I
- d) I > III > II > IV

197. Which is used as a preservative for biological specimens?

- a) Formalin
- b) Formic acid
- c) Liquid NH3
- d) Acetic acid

198. Carbon forms a very large number of compounds because:

- a) It is a non-metal
- b) It forms covalent bonds
- c) It has a strong tendency of catenation
- d) Compounds are combustible

199. What will be the order of reactivity of the following carbonyl compounds with Grignard's reagent?

$$H$$
 $C=O$ CH_3 II

$$CH_3$$
 $C=0$ $CH_3)_3C$ $C=0$ $CH_3)_3C$ $C=0$

- a) I > II > III > IV
- b) IV > III > II > I
- c) II > I > IV > III
- d) III > II > IV

200. By which of the following reagents can the following conversion be affected?

a) 2CH3MgBr and H3O+

- c) HOCH₂ CH₂OH, H⁺, 2CH₃MgBr, H₃O⁺
- b) $^{\mathrm{HOCH}_{2}}_{-\mathrm{CH}_{2}\mathrm{OH},\mathrm{H}^{+},\mathrm{LiAlH}_{4},\mathrm{ether},\mathrm{2CH}_{3}\mathrm{MgBr},\mathrm{H}_{3}\mathrm{O}^{+}}_{-\mathrm{CH}_{2}\mathrm{OH},\mathrm{H}^{+},\mathrm{LiAlH}_{4},\mathrm{ether},\mathrm{2CH}_{3}\mathrm{MgBr},\mathrm{H}_{3}\mathrm{O}^{+}_{-\mathrm{CH}_{3}\mathrm{OH}}_{-\mathrm{CH}_{3}\mathrm{OH}_{3}\mathrm{OH}_{3}}$
- d) HOCH₂ CH₂OH, H⁺, H₂, Pt, CH₃OH, H⁺
- 201. Which of the following does not give HVZ reaction?
 - a) CH₃CH₂COOH
- b) CH₃COOH
- c) HCOOH
- d) (CH₃)₂CHOH

202.

- 203. Which of the following on treatment with Baeyer's reagent will give meso-tartaric acid?
 - a) Fumaric acid
- b) Maleric acid
- c) Both (a) and (b)
- d) None of these

- 204. Wolff-Kishner's reaction is:
 - a) Reduction of carbonyl compound into hydrocarbons
 - b) Reduction of carbonyl compound into alcohols
 - c) Reduction of nitrobenzene into aniline
 - d) Reduction of carbohydrates to alcohols
- 205. Colouration of Br₂/CCl₄ will be discharged by
 - a) Cinnamic acid
- b) Benzoic acid
- c) o-phthalic acid
- d) acetophenone

- 207. Aldehydes and ketones both give addition reaction with:
- b) NaHSO₃
- c) Both (a) and (b)
- d) None of these
- 208. Identify the organic compound which, on heating with strong solution of NaOH, partly converted into an, acid salt and partly into alcohol.
 - a) Benzyl alcohol
- b) Acetaldehyde
- c) Acetone
- d) Benzaldehyde

- 209. Which of the following will undergo Cannizzaro's reaction?
 - a) CH₃CHO
- b) CH₃CH₂CHO
- c) (CH₃)₂CHCHO
- d) None of these

- 210. Long chain carboxylic acids are called fatty acids because:
 - a) The molecule is very fatty
 - b) The molecules were first found in natural fat
 - c) They have fattering effect
 - d) None of the above
- 211. Which of the following reagents can form a hydrazone with alkanone?
 - a) NH₃OHCl
- b) PhNHNH₂
- c) NH₂NHCONH₂
- d) HCN

212. Identify *X* in the sequence:

$$X \xrightarrow{1. \text{CH}_3 \text{MgCl}} C_5 \text{H}_{12} \text{O} \xrightarrow{\text{Cu}} C_5 \text{H}_{10}$$

b) CH₃CH₂CH₂CHO

c) (CH₃)₂CHCHO

d) CH3CH2CH2CH2OH

- 213. The reaction of HCOOH with conc. H₂SO₄ gives:

b) CO

- c) Oxalic acid
- d) Acetic acid

- 214. Which of the following will react with water?
 - a) CHCl₃
- b) CCl₃CHO
- c) CCl₄
- d) CH2Cl · CH2Cl

215. Ph—C \equiv C—CH₃ $\xrightarrow{\text{Hg}^{2+}/\text{H}^{+}}$

CLICK HERE

233. Which of the following will give readily a hydrocarbon?

a) $RCOOK \xrightarrow{Electrolysis}$	b) $RCOOAg \xrightarrow{I_2}$	c) $CH_3CH_3 \xrightarrow{Cl_2}$	d) $(CH_3)_2CCl_2 \xrightarrow{C_2H_2OH}$			
234. In which of the following $C=0$ and $C=C$						
reactions are not similar a) Hydrogenation	? b) Elimination	c) Oxidation	d) None of these			
235. Hydrogenation of benzo	Mana Mana Makana mana Mana Mana Mana Mana at a mana mana mana mana mana mana m	Pd on BaSO ₄ gives				
a) Benzyl alcohol	b) Benzaldehyde	c) Benzonic acid	d) Phenol			
236. On treatment of citric ac	id with fuming H ₂ SO ₄ , whi	ich of the following is produ	iced?			
a) Acetone						
b) Dihydroxy acetone						
c) Citraconic anhydride						
d) Acetone dicarboxylic						
237. Base catalysed aldol cona) Propionaldehyde	densation occurs with.					
b) Benzaldehyde						
c) 2,2-dimethyl propion	aldehyde					
d) None of the above	and only de					
238. When HCHO is treated w	vith C ₆ H ₅ CHO in presence	of NaOH, the products are:				
		보이 이 보는 이 방향이 되었다면 하면 하면 되고 그래요? 이 이 경험을 보고 있다면 하는데 되었다면 했다.	Nad) HCOONa and C ₆ H ₅ CH ₂ C			
239. When formaldehyde is h						
a) Methyl amine						
b) Amino formaldehyde						
c) Hexamethylene tetrar	nine					
d) Formalin						
240 . CH ₃ CHO + HCHO $^{\frac{\text{Dil.Na}}{\text{Hea}}}$	$\underset{\text{it}}{\overset{\text{OH}}{\longrightarrow}} A \xrightarrow{\underset{\text{H}_3\text{O}^+}{\overset{\text{HCN}}{\longrightarrow}}} B$.					
The structure of compou						
$CH_2 = CH - CH - CO$	ОН	$CH_2 = CH - CH - OH$				
a)		b)				
OH CH CH COOL		CN CH COOL				
$CH_3CH_2 - CH - COOF$	1	CH ₃ – CH – COOH				
c) OH		d) OH				
		OII				
241. $CH_3CH_2 \xrightarrow{Cl_2} X \xrightarrow{Alc.} KOH$	Y The compound Y is:					
a) CH ₃ CH ₂ OH	b) CH ₃ CH ₂ CN	c) $CH_2 = CH.COOH$	d) CH ₂ CHClCOOH			
242. The reaction of acetamic			725 E			
a) Alcoholysis	b) Hydrolysis	c) Ammonolysis	d) Saponification			
243. The most acidic among t	375)					
a) CH ₃ CH ₂ OH	b) C ₆ H ₅ OH	c) CH ₃ COOH	d) CH ₃ CH ₂ CH ₂ OH			
$244. A \xrightarrow{HCl} (CH_3)_2 C = CHCC$	OCH ₃ , A is					
a) Acetone	b) Acetaldehyde	c) Propionaldehyde	d) Formaldehyde			
245. When citric acid is heate	Title Control of the					
a) Acetone	b) Aconitic acid	c) Ethanal	d) None of these			
246. The general formula (RC		3 97 3 9 3 1972				
a) A ketone	b) An ether	c) An acid anhydride	d) An ester			
247. Formaldehyde on conde			J) V-J			
a) Formose248. The correct formula of the	b) Fructose	c) Maltose	d) Xylose			
sodium propionate is	ie product of reaction bety	меен фоно and propanoic	annyuriue ili presence or			
socialii propioliate is						

a) ϕ – CH = CHCH₂COOH

- b) $\phi CH = CH CH_2COOC_2H_5$
- 249. Which of the following compounds neither forms semicarbazone nor oxime?

- 250. When a mixture of calcium benzoate and calcium acetate is dry distilled, the resulting compound is
 - a) Acetophenone
- b) Benzaldehyde
- c) Benzophenone
- d) Acetaldehyde
- 251. An organic compound (A) with molecular formula C₉H₁₀O forms an orange-red precipitate with 2,4-DNP reagent and gives yellow precipitate on heating with iodine and NaOH. It does not reduce Tollen reagent or Fehling solution nor it decolourises bromine water as Baeyer's reagent. On drastic oxidation with chromic acid, it gives a carboxylic acid having molecular formula $C_7H_6O_2$. Identify the compound (A)

- 252. Ethanoic acid or CH₃COOH is a weak acid because:
 - a) It is highly ionized
 - b) It has no replaceable hydrogen
 - c) It is slightly ionized
 - d) It is insoluble in water
- 253. Paraldehyde is:
 - a) A trimer of formaldehyde
 - b) A trimer of acetaldehyde
 - c) A hexamer of formaldehyde
 - d) A hexamer of acetaldehyde
- 254. Calcium formate on distillation gives
 - a) HCOOH
- b) CH₃COOH
- c) CH₃CHO
- d) HCHO

- 255. Alkaline hydrolysis of 1,1-dichloroalkane yields:
 - a) Alkanal
- b) Alkanol
- c) Alkanone
- d) Alkyne
- 256. Sodium ethoxide has reacted with ethanoyl chloride. The compound that is produced in the above reaction
- a) Diethyl ether
- b) 2-butanone
- c) Ethyl chloride

C6H5CH-COOH

- d) Ethyl ethanoate
- 257. Which of the following carboxylic acids undergoes decarboxylation easily?
 - a) C₆H₅COCH₂COOH
- b) C₆H₅COCOOH
- c) ÓН
- 258. Which of the following compound cannot formed an optically active cyanohydrins on reaction with HCN?
 - a) CH₃CHO
- b) Benzaldehyde
- c) 2-pentanone
- d) 3-pentanone

- 259. The weakest acid among the following is:
 - a) CH₃COOH
- b) CH₃CH₂COOH
- c) (CH₃)₂CHCOOH
- d) (CH₃)₃C. COOH

- 260. Reaction of acid with alcohols is also known as
 - a) Esterification
- b) Saponification
- c) Alkalisation
- d) None of these
- 261. Cinnamic acid is formed when C₆H₅ CHO condenses with (CH₃CO)₂O in presence of
- a) Concentrated H₂SO₄
- b) Sodium acetate
- c) Sodium metal
- d) Anhydrous ZnCl₂

- 262. A mixture of water and NaCl can be separated by:
 - a) Sublimation
- b) Evaporation
- c) Filtration
- d) Decantation
- 263. 500 mL of a hydrocarbon gas burnt in excess of oxygen yielded 2500 mL of CO2 and 3.0 litre of water vapour (all volumes measured at the same temperature and pressure). The formula of the hydrocarbon is:
- b) C₂H₄
- c) C_5H_{12}
- d) CH₄
- 264. Which halo acid gives cyclic ester on treatment with aq.NaOH?

- d) All of these
- 265. Which reduces carboxylic acid directly to primary alcohols?
 - a) LiAlH4
- b) Na + C_2H_5OH
- c) NaBH4
- d) All of these
- 266. Which of the product is formed when acetone is reacted with barium hydroxide solution?
 - a) $CH_3 C CH_2 C CH_3$

он он

- c) $CH_3 C CH CH CH_3$

- d) $CH_3 C C CH_3$
- CH₃ CH₃

267.

- In Gattermann Koch reaction the product formed is

- 268. A colourless water soluble organic liquid decomposes sodium carbonate and liberates CO2. It produces black precipitate with Tollen's reagent. The liquid is:
 - a) CH₃CHO
- b) CH₃COOH
- c) HCHO
- d) HCOOH
- 269. The formation of cyanohydrin from a ketones is an example of:
 - a) Electrophilic addition
 - b) Nucleophilic addition
 - c) Nucleophilic substitution
 - d) Electrophilic substitution
- 270. Aldehyde are the first oxidation product of
 - a) Primary alcohol
- b) Secondary alcohol
- c) Tertiary alcohol
- d) Dihydric alcohols

271.

- 272. Urea is preferred to ammonium sulphate as a nitrogenous fertilizer because
 - a) It is more soluble in water

b) It is cheaper than ammonium sulphate

c) It is quite stable

d) It does not cause acidity in the soil

- 273. Boiling point of acetone is:
 - a) 100°C
- b) 60°C
- c) 56°C
- d) 90°C

- 274. Which of the following is correct?
 - a) All aldehydes undergo Cannizzaro's reaction
 - b) Aldehydes are less susceptible to oxidation than ketones
 - c) Aldehydes are more susceptible to oxidation than ketones
 - d) Formaldehyde forms CH2(OH)NH2with NH3
- 275. Acetone may be produced from starch by the action of:
 - a) Acid
- b) Certain bacteria
- c) Oxidising agents
- d) None of these

- 276. Benzaldehyde condense with acetaldehyde to produce
 - a) Cinnamic acid
- b) Benzoic acid
- c) Cinnamaldehyde
- d) Acetic anhydride
- 277. Formic acid cannot be halogenated with chlorine in presence of red P, but acetic acid can be halogenated in the same way, because:
 - a) Formic acid is weaker than acetic acid
 - b) Formic acid has no α -H-atom in its molecule
 - c) Both (a) and (b)
 - d) None of the above
- 278. Treatment of acetaldehyde with ethyl magnesium bromide and subsequent hydrolysis gives:
 - a) l-butanol
- b) 2-butanol
- c) l-propanol
- d) tert.-butanol
- 279. C₂H₅CHO and CH₃COCH₃ can be distinguished by testing with:
 - a) Phenyl hydrazine
- b) Hydroxylamine
- c) Fehling's solution
- d) Sodium bisulphate
- 280. Kjeldahl's method cannot be used for the estimation of nitrogen in:
 - a) Pyridine
- b) Nitrocompounds
- c) Azo compounds
- d) All of these
- 281. Acetic anhydride reacts with diethyl ether in the presence of anhydrous AlCl₃ to give:
 - a) Ethyl acetate
- b) Methyl propionate
- c) Methyl acetate
- d) Propionic acid

- 282. Formaldehyde is not used in:
 - a) Adhesives
- b) Bakelite
- c) Tooth powders
- d) Explosives

- 283. Acetic acid will be obtained on oxidation of
 - a) Ethanol
- b) Propanal
- c) Methanal
- d) Glyoxal

- 284. Acetamide is
 - a) Highly acidic
- b) Highly basic
- c) Neutral
- d) Amphoteric

- 285. Which reagent can convert acetic acid into ethanol?
 - a) Na + alcohol
- b) LiAlH₄ + ether
- c) $H_2 + Pt$
- d) Sn + HCl
- 286. Which reaction, intermediate is formed during the condensation reaction between acetaldehyde and formaldehyde?
 - a) : CH₂CHO
- b) CH₂CHO
- c) + CH₂OH
- d): CHCHO

287. Write the product of the following reaction

$$\frac{\text{(i) O}_3}{\text{(ii) Zn, HCO}_3H} \xrightarrow{\text{H}_3\text{O}^+/\text{H}^+} (A)$$

Get More Learning Materials Here:

d) None of the above

288. Which of the following regent can effectively carried out the following conversion?

a) LiAlH₄

c) $H_2/Pd - C$

d) H₂/Raney Ni

289. Which of the following on heating with aqueous KOH, produces acetaldehyde?

a) CH₃CH₂Cl

b) CH2ClCH2Cl

c) CH₃CHCl₂

d) CH3COCI

290. Which carbonyl compound does not undergo aldol condensation?

a) HCHO

b) CH₃CHO

c) CH₃CH₂CHO

d) CH₃COCH₃

291. Which of the following reagents reacts in same manner with HCHO, CH₃CHO, CH₃COCH₃?

a) HCN

b) NH2OH

c) $C_6H_5NHNH_2$

d) All of these

292. Which of the following has most acidic proton?

a) CH₃COCH₃

b) $(CH_3)_2C=CH_2$

c) CH₃COCH₂COCH₃

d) $(CH_3.CO)_3CH$

293. What are the organic products formed in the following reaction?

$$C_6H_5-COO-CH_3 \xrightarrow{1. \text{LiAlH}_4}$$

a) C₆H₅—CH₂—OH and CH₃—OH

b) C₆H₅—OH and CH₃—OH

c) C₆H₅—CH₃ and CH₃—OH

d) C₆H₅—CH₂—OH and CH₄

294. Which on oxidation will not give a carboxylic acid with the replacement of carbon atoms?

a) CH₃COCH₃

b) CCl₃CH₂CHO

c) CH₃CH₂CH₂OH

d) CH₃CH₂CHO

295. 3CH₃COCH₃ ∴HCl

 $(CH_3)_2\dot{C}=CH$

This polymer is obtained when acetone is saturated with hydrogen chloride gas. Polymer is:

a) Phorone

b) Formose

c) Diacetonyl alcohol

d) Mesityl oxide

296. Which of the following does not react with NaHSO₃?

a) CH₃COCH₃

b) CH₃CHO

c) HCHO

d) None of these

297. Which one is a polyprotic acid?

a) Acetic acid

b) Oxalic acid

c) Benzoic acid

d) Salicylic acid

298. Halogens can be estimated by:

a) Duma's method

b) Carius method

c) Liebig's method

d) None of these

299. Ethyl isocyanide on acidic hydrolysis generates

a) Ethylamine salt and methanoic acid

b) Propanoic acid and ammonium salt

- c) ethanoic acid and ammonium salt
- d) Methyl amine salt and ethanoic acid
- 300. A carbonyl compound reacts with hydrogen cyanide to form cyanohydrin which on hydrolysis forms a racemic mixture of α-hydroxy acid. The carbonyl compound is:
 - a) Diethyl ketone
- b) Formaldehyde
- c) Acetaldehyde
- d) Acetone

- 301. Which would undergo aldol condensation?
 - a) ϕ CHO + CH₃COCH₃ $\frac{\text{OH}^{-}}{}$

- b) $CCl_3CHO + HCHO \xrightarrow{OH^-}$

302. COOH

Product is

- COOH
- COOH
- COOH

- 303. Aldehydes can be oxidised by
 - a) Tollen's reagent
- b) Fehling solution
- c) Benedict solution
- d) All of these
- 304. Which can be oxidised to the corresponding carbonyl compound?
 - a) Propan-2-ol
- b) Ortho-nitro-phenol
- c) Phenol
- d) 2-methylpropan-2-ol
- 305. When ethanal reacts with CH₃MgBr and C₂H₅OH /dry HCl, the product formed are
 - a) Ethyl alcohol and 2-propanol

b) Ethane and hemiacetal

c) 2-propanol and acetal

- d) Propane and methyl acetate
- 306. In the context of the rearrangement of an oxime of a ketone to an amide (represented below)

$$\begin{array}{c|c}
R-C-R' & \xrightarrow{PCl_5} O=C-R \\
N-OH & & & \\
N+R & & & \\
N+R & & & \\
\end{array}$$

Which of the following statement is/are correct?

- a) It is the cis hydrocarbon radical (R) with respect to the OH group that migrates
- b) The group that migrates never gets completely detached from the remainder of the molecule during the transformation
- c) The rearrangement is intermolecular
- d) None of the above
- 307. In presence of dry HCl gas, CH₃CHO condenses with C₂H₅OH to give:
 - a) Aldol
- b) Paraldehyde
- c) Ethyl acetate
- d) Acetal
- 308. Which of the following acids combines the properties of acid and aldehyde?
 - a) Acetic acid
- b) Formic acid
- c) Benzoic acid
- d) Oxalic acid

- 309. Stephen's reaction is reduction of:
 - a) Alkyl cyanide with LiAlH4
 - b) Alkyl cyanide with SnCl₂and HCl
 - c) Alkyl isocyanide with Na and alcohol
 - d) Acyl halide in the presence of Pd/BaSO₄
- 310. The order or reactivity of phenyl magnesium bromide with the following compound is

a) (II)>(III)>(I)

b) (I)>(II)>(II)

c) (II)>(I)>(III) d) All react with the same rate 311. Alkaline hydrolysis of R₂C. Cl₂ forms: c) Alkanone d) Alkanal a) Propanone b) Propane 312. Dry distillation of barium salt of Hexane-1,2-dicarboxylic acid gives: c) d) 313. Which is liquid at room temperature? b) Formamide a) Acetamide c) Methane thiol d) CH₃Cl 314. The key step in Cannizaro's reaction is the intermolecular shift of d) Hydrogen band b) Hydride ion c) Hydronium ion a) Proton 315. Identify the final product of the reaction $\frac{O_3}{Zn, H_2O} \rightarrow A \frac{OH^2}{Aldol, \Delta} B$ 316. Which acid on heating gives CO and CO2 both? a) HCOOH b) CH₃COOH 317. A sequential reaction may be performed as represented below, $RCH_2CO_2H \xrightarrow{(1)} RCH_2COC1 \xrightarrow{NH_3} RCH_2 CONH_2$ RCO₂H (5) RCH₂OH (4) RCH₂NH₂ The appropriate reagent for step (3) is: a) Bromine alone b) Bromine and alkali c) HBr d) P_2O_5 318. Osazone formation is used to characterise: a) Polymers c) Carboxylic acid d) Alcohol b) Sugars 319. $C_8H_6O_4 \xrightarrow{\Delta} X \xrightarrow{NH_3} Y$ The compound X is a) o-xylene b) Phthalic acid c) Phthalic anhydride d) Salicylic acid 320. The products obtained in the reaction

d) None of the above

c) CH₃CH₂CHCOH + CO

- 321. Acetic acid vapours when passed over aluminium phosphate forms:
 - a) CH₃CHC
- b) Ketene
- c) C_2H_6
- d) C_2H_4
- 322. A mixture contains four solid organic compounds *A,B,C,D*. On heating only *C* changes from solid to vapour state. *C* can be separated from others present in a mixture by:
 - a) Distillation
- b) Crystallization
- c) Sublimation
- d) Fractional distillation
- 323. What is the end product in the following sequences of operations;

Acetamide $\stackrel{P_2O_5}{\longrightarrow} A \stackrel{4H}{\rightarrow} B$?

- a) CH₃NH₂
- b) C2H5NH2
- c) CH₃CN
- d) CH₃COONH₄

324. The appropriate reagent for the transformation

- a) Zn(Hg), HCl
- b) NH₂ NH₂, OH⁻
- c) H₂/Ni
- d) NaBH₄
- 325. Which of the following compounds will undergo self aldol condensation in presence of cold dilute alkali?
 - a) C₆H₅CHO
- b) CH₂=CH—CHO
- c) CH₃CH₂CHO
- d) None of these
- 326. Which of the following would undergo Hofmann reaction to give a primary amine?
 - a) RCOCl
- b) RCONHCH₃
- c) RCONH₂
- d) RCOOR'

- 327. In kjeldahl's method, nitrogen present is estimated as:
 - a) Na

- b) NH₃
- c) NO₂
- d) None of these
- 328. Correct order of reactivity of acid derivatives towards a nucleophile is
 - a) $RCOCl > (RCO)_2O > RCOOR > RCONH_2$
- b) $RCOOR > RCOCl > RCONH_2 > (RCO)_2O$
- c) $RCONH_2 > (RCO)_2O > RCOOR > RCOCI$
- d) $(RCO)_2O > RCOCl > RCOOR > RCONH_2$
- 329. Methylethyl ketone can be reduced to n-butane by
 - a) The Meerwein-Ponndroff reduction
- b) The Wolf-Kishner reduction

c) Mg – Hg, H₂O

d) All of the above

Show the final product of the reaction

b) () E

The name of the reaction and reagent used for it is

a) Cannizaro reaction, NaOH

- b) Aldon condensation, OH-
- c) Tischenko reaction, Al(OC₂H₅)₃
- d) Perkin reaction, (CH₃CO)₂O
- 332. Which statement is incorrect in the case of acetaldehyde and acetone?
 - a) Both react with hydroxylamine to form oximes
 - b) Both react with sodium bisulphite to form addition product
 - c) Both reduce ammoniacal silver nitrate to silver
 - d) Both react with hydrazine to form hydrazones

form	nula C ₅ H ₁₂ O. Compour		ophenylhydrazii		mpound 'B' with molecular but did not answer haloform
test	of shver infirm test.	the structure of compo		H ₂ – CH ₂ CH -	– CH ₂
a) 0	$CH_3 - CH_2 - CH_2 - CH$	$_2$ – CH_2 – OH	10-01	 OH	
C	CH ₃ – CH ₂ – CH – CH ₂	– CH _o	$CH_n = C$	H ₂ – CH – CH	I ₂ – 0H
c)	, di., di.,	0113	d)	11 ₂	12 011
-,	ОН			CH ₃	
334. Ace	tone is used:			3	
a) A	As a solvent				
b) I	n nail polishes				
c) F	or storing acetylene u	nder pressure			
d) A	All are correct				
335. Wh	ich of the following wil	ll form two isomers wit	h semi carbazid	e?	
a) E	Benzaldehyde	b) Acetone	c) Benzoqu	iinone	d) Benzophenone

336. 15 mL of a gaseous hydrocarbon required 45mL of oxygen for complete combustion. 30 mL of CO₂ is formed.

a) C_2H_6 b) C₂H₄ c) C_3H_6 d) C_2H_2 337. First Noble Prize winner in chemistry is: a) Van't Hoff b) Rutherford d) Madam Curie c) Pasteur 338. Which cannot be used as acylating agent? a) RCOBr c) RCH2COCI d) RCONH2 b) $(RCO)_2O$ 339. Malonic acid H2C< on heating gives:

b) Acetic acid +CO₂ a) Formic acid c) Oxalic acid d) Acetaldehyde 340. With hot conc. KOH brown black resinous product is given by: b) C₂H₅OH d) CH₃COCH₃ a) CH₃CHO c) HCHO

341. Acetamide and ethyl amine are distinguished by reacting with a) Br₂ water

b) Acidic KMnO₄

c) aq. NaOH and heat

342. General formula of saturated carboxylic acid is:

The formula of the hydrocarbon is:

a) $C_nH_{2n+1}COOH$

b) $C_n H_{2n} O_2$

c) Both (a) and (b)

d) None of these

d) aq. HCl and heat

343. The reagent which can be used to distinguish acetophenone from benzophenone is:

- a) 2,4-dinitrophenyl hydrazine
- b) Aqueous NaHSO3
- c) Benedict's solution
- d) I2 and Na2CO3

344. Acetaldehyde is not obtained in the reactions

a)
$$CH_2 = CH - CH_2 \xrightarrow{1.0_3} \frac{1.0_3}{2.Zn,H_2O}$$

b) CH₃CH=
$$\frac{1. O_3}{2. Zn, H_2O}$$

c) HC
$$\equiv$$
 CH + H₂O $\frac{\text{H gSO}_4}{\text{H}_2\text{SO}_4}$

d)
$$CH_3COCl + H_2 \xrightarrow{Pd-BaSO_4}$$

345. The acid present in tomatoes is:

a) Lactic acid

b) Oxalic acid

c) Citric acid

d) Tartaric acid

346. Identify A and B in the following reaction

$$CH_3 - CH_3 \stackrel{B}{\longleftarrow} CH_3COOH \stackrel{A}{\longrightarrow} CH_3CH_2OH$$

a) HI + red P

LiAlH₄

b) Ni/ Δ

LiAlH₄

c) LiAlH₄

HI + red P

d) Pd - BaSO₄

Zn + HCl

347. A ketone reacted with C₂H₅MgBr reagent followed by hydrolysis gave a product which on dehydration gives an alkene. The alkene on ozonolysis gave diethyl ketone and acetaldehyde. The ketone is: b) Ethyl methyl ketone c) Diethyl ketone a) Dimethyl ketone d) Ethyl propyl ketone 348. Cross aldol condensation occurs between a) Two same aldehydes b) Two same ketones c) Two different aldehydes and ketones d) None of the above 349. The increasing order of the rate of HCN addition to compounds A-D is: (A) HCHO (B) CH₃COCH₃ (C) PhCOCH₃ (D) PhCOPh b) D < B < C < A c) D < C < B < Aa) A < B < C < Dd) C < D < B < A CH_3 -C- OC_2H_5 350. Cis 0 $CH_3 - C - OC_2H_5$ b) $(CH_3)_3C - O - C_2H_5$ c) $C_2H_5OC_2H_5$ 11 $CH_3 - C - CH_3$ 351. Which method cannot be used for purification of liquids? a) Chromatographic b) Steam distillation c) Sublimation d) Distillation 352. CH₃COOC₂H₅ with excess of C₂H₅MgBr and hydrolysis gives C_2H_5 $CH_3 - C = O$ $CH_3 - C = O$ b) $CH_3 - C - OH$ c) | d) $CH_3 - C = 0$ 1 a) C_2H_5 CH_3 C_2H_5 CH₃ 353. Aniline is purified by: a) Steam distillation b) Simple distillation c) Vacuum distillation d) Extraction with a solvent 354. Percentage of Se(at. mass = 78.4) in peroxidase anhydrase enzyme is 0.5% by weight, then minimum molecular mass of peroxidase anhydrase enzyme is: a) 1.576×10^4 b) 1.576×10^3 c) 15.76 d) 2.136×10^4 355. Which reagent is most suitable for the following for the synthesis of HOCH2CH2CH2COOH fromHOCH₂CH₂CH₂Br? b) KCN/H_3O^+ a) Grignard reagent c) HgSO₄/H₂SO₄ d) PCl₅ 356. The IUPAC name of acrolein is: a) Propanal b) Prop-2-en-l-al c) Propan-2-ol d) Prop-l-en-2-al 357. An organic compound contains hydrogen, oxygen, a single carbon atom and responds positively to Tollen's reagent. The compound is: b) CH₃OH c) CH₃CHO d) CH₃COOH 358. The reagent with which both acetaldehyde and acetophenone react easily are a) Fehling's solution b) Schiff's reagent c) Tollen's reagent d) 2, 4-dinitrophenylhydrazine 359. $CH_3COOH \xrightarrow{LiAlH_4} A + CH_3COOH \xrightarrow{H_3O^+} B + H_2O$ In the above reactions 'A' and 'B' respectively are a) CH₃COOC₂H₅, C₂H₅OH b) CH₃CHO, C₂H₅OH c) C₂H₅OH, CH₃CHO d) C₂H₅OH, CH₃COOC₂H₅ 360. Formaldehyde gives an additive product with methyl magnesium iodide which on aqueous hydrolysis gives: a) Isopropyl alcohol

- b) Ethyl alcohol
- c) Methyl alcohol
- d) Propyl alcohol
- 361. In Kjeldahl's method of estimation of nitrogen, K2SO4 acts as:
 - a) Oxidizing agent
- b) Catalytic agent
- c) Hydrolysing agent
- d) Boiling point elevator

362. The compound that doesn't undergo aldol condensation

363. Which of the following products is formed when adipic acid is heated?

364.
$$O \longrightarrow K_2 Cr_2 O_7/H^+ \rightarrow B + C$$

Here B and C are

- d) None of the above
- 365. A silver salt of fatty acid on heating with an alkyl halide gives:
 - a) Ether
- b) Alcohol
- c) Aldehyde
- d) Ester
- 366. For hydrolysis of the following functional groups, the decreasing order of reactivity is:
 - a) $RCOOR > RCOCl > RCONH_2$
 - b) $RCOCl > RCOOR > RCONH_2$
 - c) $RCOCl > RCONH_2 > RCOOR$
 - d) $RCOOR > RCONH_2 > RCOCI$
- 367. The organic compounds A and B react with sodium metal and release H2 gas. A and B react with each other to give ethyl acetate. A and B are:
 - a) CH3COOH and C2H5OH
 - b) HCOOH and C2H5OH
 - c) CH3COOH and CH3OH
 - d) CH3COOH and HCOOH
- 368. $A \xrightarrow{\text{Dil.NaOH}} (\text{CH}_3)_2 \text{C} = \text{CHCOCH} = \text{C}(\text{CH}_3)_2$

b) Formaldehyde

- c) Acetone
- d) Propionaldehyde

- 369. The hydrolysis product of $CH_3COCH_3 + CH_3MgBr$ is
 - a) n -butyl alcohol

a) Acetaldehyde

b) Tertiary butyl alcohol

c) Secondary butyl alcohol

- d) Isopropyl alcohol
- 370. Aldehyde used in the manufacture of perfumes is:
 - a) HCHO
- b) CH₃CHO
- c) C₆H₅CHO
- d) CCl₃CHO

371.
$$\begin{array}{c} O \\ \parallel \\ R - \overset{\parallel}{C} - OH_2^+ \xrightarrow{H_2SO_4} RCOOH \xrightarrow{H_2SO_4} R - \overset{\dagger}{C} - OH_2^+ \\ [X] \end{array}$$

Which is more stable?

a) X

b) Y

c) Both are equally stable

- d) Can't be predicted
- 372. When sodium formate is heated it gives:
 - a) Hydrogen
- b) Water
- c) Sodium hydroxide
- d) Carbon dioxide

- 373. In esterification, the reactivity of alcohols is:
 - a) $3^{\circ} > 2^{\circ} > 1^{\circ}$
- b) $1^{\circ} > 2^{\circ} > 3^{\circ}$
- c) Same in all cases.
- d) None of these
- 374. Separation of organic compounds by column chromatography is due to:
 - a) Selective adsorption
 - b) Selective absorption
 - c) Solubilities
 - d) Selective adsorption and selective absorption
- 375. To determine the weight of halogen in the organic compound, the compound is heated with fuming HNO₃ in presence of:
 - a) Ag

- b) AgNO₃
- c) AlCl₃
- d) Ag₂SO₄

- 376. Cannizzaro's reaction involves:
 - a) Conversion of aldehyde into acid only
 - b) Conversion of aldehyde into alcohol only
 - c) Redox system reaction
 - d) Aromatic transformation

377.

CHO OHC
$$(i) \text{ NaOH/100°C} \longrightarrow A + ...$$
CHO OHC

The major product A is:

- 378. Which one of the following compounds on treatment with LiAlH4 will give a product that will give a positive iodoform test?
 - a) CH₃CH₂CHO
- b) CH₃CH₂COOCH₃
- c) CH₃CH₂OCH₂CH₃
- d) CH₃COCH₃
- 379. An aldehyde can be distinguished from a ketone by the use of the reagent:
 - a) Grignard reagent
- b) Schiff's reagent
- c) Hydroxylamine
- d) Hydrazine
- 380. A compound A has molecular formula C₂Cl₃OH. It reduces Fehling's solution and on oxidation gives a monocarboxylic acid B. A is obtained by action of Cl_2 on ethyl alcohol. A is:
 - a) Chloral
- b) CHCl₃
- d) Chloro acetic acid
- 381. Halogenation of silver salt of carboxylic acid using CCl₄ as solvent to form alkyl halide is an example of:
 - a) Free radical halogenation
 - b) Nuclear halogenation
 - c) Hunsdiecker reaction
 - d) HVZ reaction
- 382. Anhydrous CaCl2 is used as drying agent because it:
 - a) Adsorbs water molecules
 - b) Absorbs water molecules
 - c) Adsorbs and absorbs water molecules
 - d) none of the above

"A" and "B" are

a) CH3CH2COOH, CH3COCH2CH3

b) CH₃CH₂COOH, CH₃COOH

c) CH₃COOH, CH₃COCH₃

- d) CH3COOH, C2H5COC2H5
- 384. Aldol condensation between the following compounds followed by dehydration gives methyl vinyl ketone:
 - a) Methanal and ethanal
 - b) Two mole of formaldehyde
 - c) Methanal and propanone
 - d) Two mole of ethanol
- 385. In a reaction RCHO is reduced to RCH3 using amalgamated zinc and concentrated HCI and warming the solution. The reaction is known as
 - a) Meerwein-Ponndorf reaction

b) Clemmensen's reduction

c) Wolff-Kishner reduction

- d) Schiff's reaction
- 386. The Lassaigne's extract is boiled with conc. HNO₃ while testing for halogens. By doing so it:
 - a) Increases the concentration of NO₃ ions
 - b) Decomposes Na2S and NaCN, if formed
 - c) Helps in the precipitation of AgCl
 - d) Increases the solubility product of AgCl

387.
$$CH \equiv CH \xrightarrow{CH_3MgBr} A \xrightarrow{(i)CO_2} B \xrightarrow{HgSO_4/H_2SO_4} D \xrightarrow{(i)[Ag(NH_3)_2]^+,OH^-} C$$

In the given reaction, product D is,

a) c

388. Among the following compounds which will react with acetone to give a product containing C=N-?a) $C_6H_5NH_2$ b) $C_6H_5NHNH_2$ c) $(CH_3)_3N$ d) $C_6H_5NHC_6H_5$ 389. Which can be used to distinguish aldehydes and ketones? a) Fehling's solution b) H₂SO₄ solution c) NaHSO3 d) NH₃ 390. The name of H-C-COOH is: H-C-COOH a) Maleic acid b) Fumaric acid c) Malonic acid d) Succinic acid 391. The important step in Cannizzaro's reaction is the intermolecular shift of: a) Proton b) H-atom c) Hydride ion d) Hydronium ion 392. Given below are some statements concerning formic acid, which of them is true? a) It is weaker acid than acetic acid b) It is reducing agent c) When its calcium salt is heated, it forms a ketone d) It is an oxidising agent 393. When Lemery for the first time proposed his classification of substances in 1675 the substance not known among the following was: b) Wine d) Penicillin a) Cane sugar c) Iron 394. Formalin is: a) Formaldehyde b) Formaldehyde + methanol c) Formaldehyde + methanol + water d) Formaldehyde + water 395. Chloral belongs to the class of: a) Alcohols b) Aldehydes c) Amides d) Ketones 396. Which one of the following product is formed when calcium salt of adipic acid is heated? CH2CH2COOH CH2CH2CO CH2CH2COOH 397. The product of acid hydrolysis of Pand Q can be distinguish by OCOCH₂ a) Lucas reagent b) 2, 4-DNP c) Fehling's solution d) NaHSO₃ 398. Which gives positive haloform test and positive Fehling's solution test? a) Acetone b) Acetaldehyde c) Ethanol d) Formaldehyde 399. Acetone when saturated with dry acid gives: a) Diacetone alcohol b) Mesityl oxide c) Mesitylene d) Propane 400. —COOH group of a compound does not react with NaHSO₃ even though it has C=O group because of: a) Acid character b) Resonance c) Cyclic structure

d) The attached organic group 401. Aceto acetic ester behaves as:

a) An unsaturated hydroxyl compound

- b) A keto compound
- c) Both of these ways
- d) None of the above
- 402. When benzoic acid is treated with PCl₅ at 100°C, it gives
 - a) Benzoyl chloride
- b) o-chlorobenzoic acid
- c) p-chlorobenzoic acid
- d) Benzyl chloride

403. $CH_3 COOCH_3 + excess PhMgBr \rightarrow Product \xrightarrow{H^+} X$

Th product X is

a) 1, 1-diphenylethanol

b) 1, 1-diphenylethanol

c) Methyl phenylethanol

- d) Methyl phenylketone
- 404. The major product obtained in the reaction,

$$CH_2=CH-C-CH_3+HCN \xrightarrow{OH^-} is$$

$$CH_3$$
c) CH_3 — C — CH_2 — CH — CH_2

- d) None of the above

405. The end product B in the sequence of reactions,

$$R - X \xrightarrow{CN^-} A \xrightarrow{NaOH} B$$
 is:

- a) An alkane
- b) A carboxylic acid
- c) Sodium salt of carboxylic acid
- d) A ketone
- 406. The correct order of acidic strengths of the carboxylic acids is
 - a) Formic acid < benzoic acid < acetic acid
- b) Formic acid < acetic acid < benzoic acid
- c) Acetic acid < formic acid < benzoic acid
- d) Acetic acid < benzoic acid < formic acid
- 407. When formic acid reacts with PCl₃, it forms:
 - a) Formyl chloride
- b) Acetyl chloride
- c) Methyl chloride
- d) Propionyl chloride

- 408. Carboxylic acids react with diazomethane to yield:
 - a) Amines
- b) Alcohols
- c) Esters
- d) Amides
- 409. $Me_2CHCHO + CH_2 = CHCOCH_3$ (i)Michael addition [X] product is

- 410. Tamarind contains:
 - a) (+) tartaric acid
- b) (-) tartaric acid
- c) Citric acid
- d) Lactic acid
- 411. Which of the following, compounds is the reactant in Rosenmund's reduction?
 - a) CH₃CO₂H
- b) CH₃CHO
- c) CH₃CH₂Cl
- d) CH₃COCl

- 412. Aldol condensation will not take place in
 - a) HCHO
- b) CH₃CH₂CHO
- c) CH₃CHO
- d) CH₃COCH₃

- 413. Benzaldehyde reacts with methyl amine to give
 - a) $C_6H_5NH_2$
- b) C₆H₅CH₂NH₂
- c) $C_6H_5CH = NCH_3$
- d) C₆H₅CONH₂
- 414. The reagent with which both acetaldehyde and acetone react easily is:
 - a) Fehling's solution
- b) Grignard reagent
- c) Schiff's reagent
- d) Tollen's reagent

415. 0.20 g of a hydrocarbon on combustion gave 0.66 g CO2. The percentage of hydrogen in the hydrocarbon is a) 33 d) 90 b) 45 c) 10 416. Which of the following is hydroxy acid? a) Malic acid b) Lactic acid c) Tartaric acid d) All of these 417. Which one of the following undergoes reaction with 50% sodium hydroxide solution to give the corresponding alcohol and acid? d) Benzoic acid a) Phenol b) Benzaldehyde c) Butanal 418. Amides may be converted into amines by reaction named after: a) Perkin b) Claisen c) Hofmann d) Kekule 419. The correct order of decreasing acid strength of trichloroacetic acid, (A), trifluoroacetic (B), acetic acid (C) and formic acid (D) is: a) A > B > C > Db) A > C > B > Dc) B > A > D > Cd) B > D > C > A420. Which of the following is the strongest acid? a) HCOOH (p K_a 3.77) b) C_6H_5COOH (p K_a 4.22) c) $CH_3COOH (pK_a 4.71)$ d) CH_3CH_2COOH (p K_a 4.88) 421. In Lassaigne's test sodium metal is used because: a) It is a very reactive b) Its melting point is low c) Its compounds are soluble in water d) all of the above 422. A process that involves the union of two or more molecules to form a new molecular aggregate without losing any simple molecule is known as: a) Polarisation b) Polymerisation c) Photosensitization d) None of these 423. o-toluic acid on reaction with Br₂ + Fe gives CH₂Br COOH 424. The correct order of increasing acid strength of the compounds (A) CH₃COOH (B) MeOCH2COOH (C) CF₃COOH a) B < D < A < Cb) D < A < C < Bc) D < A < B < Cd) A < D < C < B425. Acetic acid and P₂O₅ reacts to produce which of the following? a) Acetic anhydride b) Acetaldehyde c) Phosphoric acid d) Acetone 426. Which of the following is an example of aldol condensation? a) $2CH_3CHO \xrightarrow{Dil. NaOH} CH_3CHOHCH_2CHO$ b) HCHO $\xrightarrow{\text{Dil. NaOH}}$ CH₃OH c) $C_6H_5CHO + HCHO \xrightarrow{Dil. NaOH} C_6H_5CH_2OH$ d) $2CH_3COCH_3 \xrightarrow{Conc. NaOH} CH_3C(OH)(CH_3)CH_2COCH_3$

- 427. Aldehydes behave as:
 - a) Oxidising agent
 - b) Reducing agent
 - c) Dehydrating agent
 - d) Oxidizing as well as reducing agent
- 428. Acetone is prepared by:
 - a) Pyrolysis of acetic acid
 - b) Oxidation of acetic acid
 - c) Pyrolysis of calcium acetate
 - d) Oxidation of n-propyl alcohol
- 429. Benzaldehyde gives a positive test with
 - a) Tollen's reagent
- b) Fehling's solution
- c) Benedict's solution
- d) All of these
- 430. Isopropyl alcohol on passing over heated copper at 300°C gives:
 - a) Propylene
- b) Acetaldehyde
- c) Acetone
- d) None of these

- 431. Vinegar contains:

 - a) 10 to 20% acetic acid b) 10% acetic acid
- c) 6 to 10% acetic acid
- d) 100% acetic acid

432. What product is formed in the reaction

a)
$$CONH_2$$
 $CONH_2$
 $CONH_2$

- 433. Acetaldehyde is the rearrangement product of:
 - a) Ethyl alcohol
- b) Vinyl alcohol
- c) Allyl alcohol
- d) Methyl alcohol

d) 0_2

- 434. When sodium extract is prepared, generally the substance ignites:
 - a) Na

b) H₂

- c) Organic compound
- 435. The compound which forms acetaldehyde when heated with dilute NaOH, is
 - a) 1, 1-dicholoroethane

b) 1, 1, 1-trichloroethane

c) 1-chloroethane

- d) 1, 2-dichloroethane
- 436. COOH COOH COOH

 The reaction: $2 \mid \xrightarrow{OH^-} \mid + \mid$ is

 CHO CH_2OH COONa
 - a) Crossed Cannizzaro reaction
 - b) Intermolecular Cannizzaro reaction
 - c) Intramolecular Cannizzaro reaction
 - d) Either of the above
- 437. The product of following reaction

- 438. Tollen's reagent is:
 - a) Ammoniacal cuprous chloride
 - b) Ammoniacal cuprous oxide
 - c) Ammoniacal silver nitrate
 - d) Ammoniacal silver nitrite
- 439. Which structural unit is possessed by aldehyde and not ketone?

- a) α-H-atom
- b) H-atom and carbonyl group
- c) OH and carbonyl group
- d) None of the above
- 440. CH₃CH₂CHO is produced when the following is hydrolysed:
 - a) CH₃CH₂CH₂Cl
- b) CH₃CHClCH₂Cl
- c) CH₃CH₂CHCl₂
- d) CH₃C · Cl₂ · CH₃
- 441. Acetaldehyde undergoes self condensation in presence of aluminium ethoxide to give ethyl acetate. This reaction is called:
 - a) Perkin reaction
- b) Tischenko's reaction
- c) Cannizzaro's reaction d) Aldol condensation
- 442. Formaldehyde polymerises from 6 to 100 molecules to form:
 - a) Formalin
- b) Metaldehyde
- c) Para formaldehyde
- d) None of these

- 443. Magenta is:
 - a) Alkaline phenolphthalein
 - b) Red litmus
 - c) p-rosaniline hydrochloride
 - d) Methyl red
- 444. Aldehyde which is formed during photosynthesis of plants is
 - a) Methanal
- b) Acetaldehyde
- c) Propanal
- d) Phenylmethanal
- 445. Which of the following carboxylic acids undergoes decarboxylation easily?
 - a) C₆H₅—CO—CH₂COOH b) C₆H₅—CO—COOH
- C_6H_5 CH COOHÓН
- C_6H_5 CH COOH
- 446. The salicylic acid reacts with both the neutral FeCl₃ solution and in esterification reaction because it contains:
 - a) Both an acid group and an alcoholic group
 - b) Both an acid group and an aldehydic group
 - c) Both an acid group and a phenolic group
 - d) Both an acid and ester group
- 447. Consider the following reaction:

The product 'A' is:

- a) C₆H₅CHO
- b) C₆H₅OH
- c) C₆H₅COCH₃
- d) C_6H_5Cl
- 448. Ink stains can be removed from clothes by treating them with:
 - a) Formic acid
- b) Acetic acid
- c) Benzoic acid
- d) Oxalic acid

- 449. Identify 'acetaldoxime'
 - a) $CH_3CH = N NH_2$
- b) $CH_3CH = N OH$
- c) $(CH_3)_2C = N OH$
- d) $CH_2 = N OH$

- 450. Benzaldehyde and acetaldehyde can be distinguished by:
 - a) Iodoform test
 - b) 2: 4 DNP test
 - c) NH₃ reaction
 - d) Wolff-Kishner's reduction
- 451. Ethyl benzoate reacts with PCl₅ to give
 - a) $C_2H_5Cl + C_6H_5COCl + POCl_3 + HCl$
- b) $C_2H_5Cl + C_6H_5COCl + POCl_3$

c) CH₃COCl + C₆H₅COCl + POCl₃

- d) $C_2H_5Cl + C_6H_5COOH + POCl_3$
- 452. Lactic acid extracted from muscles is:
 - a) laevo-rotatory
 - b) dextro-rotatory
 - c) Similar with synthetic lactic acid

- d) None of the above
- 453. Phenol is soluble in:
 - a) Dilute HCl
 - b) Both NaOH solution and dilute HCl
 - c) NaHCO3 solution
 - d) NaOH solution
- 454. The correct order of reactivity of PhMgBr with,

- c) II > III > I
- d) II > I > III
- 455. Reactions between organic compounds are generally slow because they are:
 - a) Ionic
- b) Covalent
- c) Metallic
- d) None of these

456. Ethyl ester - \rightarrow *P*, the product '*P* will be

457. ÇOOH (i) 2C₂H₅OH (ii) 2NH₃ COOH

What is"Y"?

- 458. Lemon gives sour taste because of
 - a) Citric acid
- b) Tartaric acid
- c) Oxalic acid
- d) Acetic acid
- 459. On warming formic acid with ammoniacal silver nitrate, the product formed is:
 - a) Silver oxide
- b) Metallic silver
- c) Silver formate
- d) Formaldehyde
- 460. Simple distillation is used to separate liquids which differ in their boiling point by:

- b) 10°C
- c) $30^{\circ} 80^{\circ}$ C
- d) Less than 20°C

- 461. Maximum percentage of chlorine is in:
 - a) Pyrene
- b) PVC
- c) Chloral
- d) Ethylidene chloride
- 462. Which of the following aldehydes give red precipitated with Fehling solution?
 - a) Benzaldehyde
- b) Salicylaldehyde
- c) Acetaldehyde
- d) None of these

- 463. Pinacole is:
 - a) 2,3-dimethyl-2,3-butandiol
 - b) 3,3-dimethyl-2-propanone
 - c) 3-methyl butan-2-ol
 - d) None of the above
- 464. CH₃CHO $\xrightarrow{\text{HCN}}$ A $\xrightarrow{\text{HOH}}$ B. The product *B* is
 - a) Malonic acid
- b) Glycolic acid
- c) Lactic acid
- d) Malic acid
- 465. A mixture of calcium acetate and calcium formate on heating gives:
 - a) CH₃COCH₃
- b) CH₃CHO
- c) HCHO
- d) All of these
- 466. Which of the following can be used to differentiate between aldehyde and ketone?
 - a) Ammoniacal AgNO₃
 - b) Ammoniacal AgNO3 in presence of tartarate ion
 - c) I2 in the presence of base

- d) Ammoniacal AgNO3 in the presence of citrate ion
- 467. If the compound contains C, H and halogen. When C and H are to be estimated the combustion tube at the exit should contain a:
 - a) Copper spiral
- b) Silver spiral
- c) Lead spiral
- d) Iron spiral

- 468. A ketone on reduction gives:
 - a) Primary alcohol
 - b) Secondary alcohol
 - c) A dihydric alcohol
 - d) A mixture of above all three
- 469. Which is least soluble in water?
 - a) Phenol
- b) Ethanol
- c) Benzene
- d) Benzoic acid

470. In a set of reactions propionic acid yielded a compound *D*.

$$CH_3CH_2COOH \xrightarrow{SOCl_2} B \xrightarrow{NH_3} C \xrightarrow{KOH} D$$

The structure of D would be:

- a) CH₃CH₂NHCH₃
- b) CH₃CH₂NH₂
- c) CH₃CH₂CH₂NH₂
- d) CH3CH2CONH2

- 471. Acetals are:
 - a) Aldehyde
- b) Diethers
- c) Ketones
- d) Hydroxy aldehydes

- 472. Hexamethylene tetramine is used as an:
 - a) Analgesic
- b) Antipyretic
- c) Urinary antiseptic
- d) All of these
- 473. Which of the following gives an aldehyde on dry distillation?
 - a) Calcium formate + calcium acetate
- b) Calcium acetate + calcium benzoate

c) Calcium acetate

- d) Calcium benzoate
- 474. Which aldehyde cannot be obtained by Rosenmund's reaction?
 - a) CH₃CHO
- b) HCHO
- c) CH₃CH₂CHO
- d) All of these

- 475. Which is tribasic acid?
 - a) Malonic acid
- b) Citric acid
- c) Valeric acid
- d) Tartaric acid
- 476. Which of the following on heating with aqueous KOH, produces acetaldehyde?
 - a) CH₃COCl
- b) CH₃CH₂Cl
- c) CH₂ClCH₂Cl
- d) CH₃CHCl₂

- 477. Fruits are preserved by using:
 - a) Aldehydes
- b) Sodium benzoate
- c) Formic acid
- d) Salicylic acid

478. End product of the following reaction is

$$CH_3CH_2COOH \xrightarrow{Cl_2} X \xrightarrow{Alc.KOH}$$

CH₃CH₂COOH

CH2CH2COOH

CH₂CHCOOH

- a) OH
- b) | OH

- c) $CH_2 = CHCOOH$
- d) | Cl OH

479. Predict the product for the following

$$\begin{array}{c}
O \\
\hline
Aldil \\
condensation
\end{array}$$

$$d)$$
 OH $C-CH_{\frac{1}{2}}$

- 480. Ketones can be prepared by:
 - a) Rosenmund's reduction
 - b) Stephen's reduction

- c) Both (a) and (b)
- d) None of the above
- 481. The percentage of nitrogen in urea is about:
 - a) 64.6
- b) 46.7
- c) 35.8
- d) 28

- 482. Collin's reagent is used to convert
 - a) >c==o-

b) $- CH_2OH \rightarrow CHO$

c) - CHO $\rightarrow -$ COOH

- d) CHO $\rightarrow -$ CH₂OH
- 483. Which of the following reactant give Tollen's reagent and Fehling's solution test?

$$CH_3 - C - CH_3$$

- a) CH₃CHO
- b) CH₃COOH
- c) П
- d) $CH_3 CH_2COOH$
- 484. Reduction of aldehydes and ketones into hydrocarbons using Zn Hg HCl conc. is called?
 - a) Cope reaction
 - b) Dow reaction
 - c) Wolff-Kishner reaction
 - d) Clemmensen reduction
- 485. How will you convert butan-2-one to propanoic acid?
 - a) Tollen's reagent
- b) Fehling solution
- c) NaOH /I₂/H⁺
- d) NaOH/NaI/H+

486.

d)

- 487. When vapours of acetic acid are passed over 300°C we get acetone.
 - a) Al₂O₃
- b) CuO
- c) MoO
- d) Cu
- 488. Which product is obtained on reduction of methanal in the presence of concentrated NaOH?
 - a) Formic acid and methyl alcohol
- b) $CO + H_2$

c) Methyl alcohol

- d) Formic acid
- 489. Which of the following doesn't give Fehling solution test?
 - a) Acetone
- b) Propanal
- c) Ethanal
- d) Butanal

490. Which gives smell of bur			142 W2 7-100 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
a) Tartaric acid	b) Formic acid	c) Oxalic acid	d) Acetic acid
491. Hydrated oxalic acid cor		8 1977 BE 1977	1023 W W 82
a) 5 water molecules	b) 1 water molecule	c) 2 water molecules	d) 4 water molecules
492. Cacodyl test is used for i			
а) НСООН	b) CH ₃ COOH	c) Oxalic acid	d) Tartaric acid
493. During hydrogenation o		ed. In this process:	
 a) Hydrogen is dissolved 			
b) Hydrogen combines v			
	fatty acids are reduced to the	hose of saturated acids	
d) Hydrogen drives off i			
494. Hydrogenation of C ₆ H ₅ C		7 1175	
a) C ₆ H ₅ CH ₂ COOH	b) C ₆ H ₁₁ CH ₂ COOH	c) C ₆ H ₅ CHOH. CH ₂ OH	d) $C_6H_{11}CHOH - COOH$
495. Formaldehyde can be di	가 보면 하다는 것을 보면 하는 것이다. 그렇게 하나 사람들은 사람들이 보고 있다. 그리고 있는 사람들이 보고 있다면 하는 것이다. 그리고 있다면 하는 것이다. 그리고 있다면 하는 것이다. 그리고 사람들이 되었다면 하는 것이다면 하는 것이다. 그리고 있다면 하는 것이다면 하는 것이	de by the use of:	
a) Schiff's reagent	b) Tollen's reagent	c) reming a solution	d) NaOH and iodine
496. Which of the following of			c compound?
a) CH ₃ CHO	b) HCHO	c) $(CH_3)_2CO$	d) CH ₃ CH ₂ CHO
497. Mild oxidation of carbox	ylic acids occurs atposit	tion.	
a) α	b) γ	c) β	d) δ
498. The compound obtained	by the reduction of propior	naldehyde by Zn/Hg and co	nc. HCl is:
a) Propanol	b) Propane	c) Propene	d) None of these
499. Almost all amides exist i	n:		
a) Solid state			
b) Liquid state			
c) Gaseous state			
d) Liquid and gaseous st	ate		
500. In public urinals, we obs	erve some nascent smell. Th	nis smell is due to:	
a) Hydrolysis of urea of	urine by urease of atmosph	ere into NH ₃ and CO ₂	
b) Formation of sulphan	nic acid by urea of urine		
c) Reaction of CO ₂ of atmosphere with urea mononitrate in urine			
	air reacts with nitrogen forn		
501. Trichloroacetaldehyde v	vas subjected to Cannizaro's	reaction by using NaOH.T	he mixture of the products
contains sodium trichlor	roacetate ion and another co	ompound. The other compo	und is
a) 2, 2, 2-trichlorethano	I.	b) Trichloromethanol	
c) 2, 2, 2-trichloropropa	nol	d) Chloroform	
502. The end products in the		경기 전 경기 전 경기 전 경기 전 경기 전 경기 시작 (1980년 1982년 1982년 1982년 - 1982년 - 1982년 1982	
a) PhCO ₂ H, PhCH ₂ OH	b) PhCO ₂ H, PhCH ₂ CO ₂ H	c) PhCH ₂ OH, PhCOCH ₃	d) PhCO ₂ H, PhCOCH ₃
503. Turpentine oil can be pu	rified by:		
 a) Vacuum distillation 	b) Fractional distillation		d) Simple distillation
504. CH ₃ NH ₂ is heated with s	odium and extracted with w	vater and then $AgNO_3$ is add	ded. The white ppt. obtained
is of:			
a) AgCN	b) Ag ₂ SO ₄	c) AgCl	d) Cl · CH ₂ COOAg
505. An ester $(A)C_{11}H_{14}O_2$ w	7, 3		
heating with an acid for	$ms(D)C_9H_{10}$. Compound D of	on vigorous oxidation with	KMnO ₄ gives terephthalic
acid. The compound (A)	, is		
		CH*COO	C _o H _e
a) H3C-⟨○⟩-CH2CC	OC ₂ H ₅	b) H-C	OZ' '5
") \ <u>-</u>		H ₃ C	

$$_{c)}$$
 $H_3C-\bigcirc\bigcirc$ $-CH_2CH_2COOCH_3$

506. Elements found in explosive are:

- c) Both S and N

507. Which acid forms Zwitter ions?

- a) CH₃COOH
- b) Salicylic acid
- c) Phthalic acid
- d) Sulphanilic acid

508. Acetaldehyde cannot show

- a) lodoform test
- b) Lucas test
- c) Benedict's test
- d) Tollen's test

509. In Lassaigne's test for N, S and halogens, the organic compound is:

- a) Fused with sodium
- b) Dissolved with sodamide
- c) Extracted with sodamide
- d) Fused with calcium

510. The number of aldehydes of molecular formula C₅H₁₀O is:

d) 5

511. Which of the following compound a would have the smallest value of pK_a ?

- a) CHF₂CH₂CH₂COOH
- b) CH₃CH₂CF₂COOH
- c) CH₂FCHFCH₂COOH
- d) CH₃CF₂CH₂COOH

512. Hydrolysis of an ester gives acid A and alcohol B. The acid reduces Fehling's solution. Oxidation of alcohol B gives acid A. The ester is:

- a) Methyl formate
- b) Ethyl formate
- c) Methyl acetate
- d) Ethyl acetate

513. Weakest acid among the following is:

- a) CH₃COOH
- b) CH₂ClCOOH
- c) (CH₃)₂CHCOOH
- d) CCl₃COOH

514. What is the product in following cross Claisen condensation?

$$C_2H_5COOC_2H_5 + \begin{vmatrix} COOC_2H_5 \\ COOC_2H_5 \end{vmatrix} \xrightarrow{C_2H_5ONa} ?$$

a)
$$CH_3CH < COOC_2H_5$$

 $COOC_2H_5$

b)
$$CH_3-CH$$
 $COCOOC_2H_5$ $COCOOC_2H_5$ $COCOC_2H_5$ $COCOC_2H_5$ $COCOC_2H_5$

$$_{\rm c)} \stackrel{\rm CH_3CH}{<} \stackrel{\rm COCOOC_2H_5}{<}$$

d)
$$CH_3$$
- CH_3 - CH_3 - CH_3 - CH_5

515. 0.22 g of organic compound C_xH_yO which occupied 112 mL at NTP and on combustion gave 0.44 g CO₂. The ratio of *X* to *Y* in the compound is:

- a) 1:1
- c) 1:3
- d) 1:4

516. Rate of the reaction:

$$R-C \swarrow_{Z}^{O} + Nu^{\Theta} \longrightarrow R-C \swarrow_{Nu}^{O} + Z^{\Theta}$$

- a) OCOCH₃
- b) NH₂
- c) OC₂H₅
- d) Cl

517. Among the following acids which has the lowest p K_a value?

- a) CH₃CH₂COOH
- b) $(CH_3)_2CH COOH$
- c) HCOOH
- d) CH₃COOH

518. The reaction of an organic compound with ammonia followed by nitration of the product gives a powerful explosive, called RDX. The organic compound is

- a) Phenol
- b) Toluene
- c) Glycerine
- d) Formaldehyde

519. The decreasing order of solubility of methanal (A), propanaldehyde (B), benzaldehyde (C) and acetophenone (D):

- a) A > B > C > D
- b) D > C > B > A
- c) D > A > B > C
- d) B > A > C > D

520. Why —OH group in ethyl alcohol is neutral, while it is acidic in acetic acid?

a) In acetic acid —OH	group is attached with	n electronegative carbonyl grou	n		
	b) Ethyl alcohol molecules get associated				
c) Acetic acid has muc		oonding			
d) All of the above		5-00-00-000 5 7			
521. The class of compound	ds that are reduced to	primary alcohols and also respo	ond to Fehling's solution are		
known as:			EQ.		
a) Aliphatic aldehydes	b) Aliphatic ketor	nes c) Aromatic amines	d) Aromatic ketones		
522. $CH_3 - CHO + HCN \rightarrow$	A.Compound A on hyd	lrolysis gives			
a) CH ₃ – CH ₂ – COOH		b) CH ₃ – CH ₂ – CH ₂ – N CH ₃ – CH – COOH	NH ₂		
c) CH ₃ – CO – COOH		d) OH			
523. Which of the following	g aldehydes on chlorin	ation will give a product, which	can be used for the synthes		
of DDT?					
а) НСНО	b) CH ₃ CHO	c) CH ₃ CH ₂ CHO	d) C ₆ H ₅ CHO		
524. The relation of the iso	electric point for an an	nino acid to solubility is:			
a) The two are not rela					
b) An amino acid is the					
	2010년(BECHER BECHER BELLE BECHER	y at the isoelectric point			
d) Solubilities of only					
525. The discovery that sho	ocked the vital force th	eory was:			
a) Stereoisomerism					
b) Synthesis of indigo	- C C NII CNO				
c) Wöhler's synthesis					
d) Fermentation of sug		ash slip VOII fallowed by a sidifi	aati an almaa		
		coholic KOH followed by acidifi	cation gives:		
a) CH ₃ —CH(OH)—CO	ЮП				
b) CH ₂ =CH—COOH c) HO—CH ₂ —CH ₂ —COOH					
d) None of the above	.0011				
527. A mixture of camphor	and NaCl can be separ	rated by:			
a) Sublimation	b) Evaporation	c) Filtration	d) Decantation		
		, the compound obtained is:			
a) CH ₃ CH ₂ COOH	b) CH ₂ =CHCH ₂ OI		d) CH ₃ CH ₂ CHO		
529. Among the given comp		eptible to nucleophile attack at			
a) MeCOCl	b) MeCHO	c) MeCOOMe	d) MeCOOCOMe		
530. In Tischenko's reactio	n an aldehyde is heate	d with catalyst:			
a) NaOH					
b) $Al(OC_2H_5)_3$					
c) Al ₂ O ₃					
d) Mg/Hg					
531. Identify Z in the seque	ence,				
$\text{CH}_3\text{CO\bar{O}}\text{NH}_4^+$ $\frac{1.\text{Heat}}{2.\text{P}_2\text{O}_5}$	$Y \xrightarrow{\mathrm{H}_2\mathrm{O}(\mathrm{H}^+)} Z$:				
CH ₃ -CH ₂ -C-NH	H_2				
CH ₃ -CH ₂ -C-NF a) 0	b) CH ₃ CN	c) CH ₃ COOH	d) (CH ₃ CO) ₂ O		
532. In the $\alpha\text{-halogenation}$	of aliphatic acids (HVZ	reaction) the catalyst used is:			

 $533.\ Distillation\ under\ reduced\ pressure\ in\ principle\ resembles\ with:$

d) AlCl₃

- a) Steam distillation
- b) Fractional distillation
- c) Azeotropic distillation
- d) All of these
- 534. Which of the following does the best represent the structure of the carboxylate ion?

d) None of these

535. Acetic acid is obtained when:

- a) Glycerol is heated with sulphuric acid
- b) Methyl alcohol is oxidized with potassium permanganate
- c) Acetaldehyde is oxidized with potassium dichromate and sulphuric acid
- d) Calcium acetate is distilled in presence of calcium formate

536.

537. Acetophenone is used in:

- a) Toilet soaps
- b) Preparation of hypnotic drug
- c) Perfumery
- d) Phenacyl chlorine preparation used in tear gas shells
- 538. In organic compounds sulphur is estimated as:

a) H₂SO₄ 539.

Major product is

c) SO₂

d) BaCl₂

HOOC HO СООН

- 540. Malonic acid and succinic acid are distinguished by:
 - a) Heating
- b) NaHCO₃
- c) Both (a) and (b)
- d) None of these

541. Pleasant odours of common fruits is due to:

a) Alcohol b) Fats c) Sugars d) Esters 542. Which one of the following pairs gives effervescence with aq. NaHCO₃? CH₃COCl CH₃COCH₃ (I) (II)CH₃COOCH₃ CH3COOCOCH3 (III) b) I and IV a) I and II c) II and III d) I and III 543. The reduction of aldehydes and ketones to the corresponding alkanes in presence of alkaline hydrazine solution is called: a) MPV reaction b) Stephen reduction c) Wolff-Kishner's reduction d) Cannizzaro's reaction 544. The acid showing salt like structure in aqueous solution is: b) Benzoic acid a) Acetic acid c) Formic acid d) α-aminoacetic acid 545. Cannizaro reaction is given by c) CHCH2CHO d) CH₃CH₂OH b) C(OH)COOH a) HCHO 546. Acetone on addition to methyl magnesium bromide forms a complex, which on decomposition with acid gives X and Mg(OH)Br. Which one of the following is X? c) (CH₃)₂CHOH d) CH₃CH₂OH b) (CH₃)₃COH 547. OHC(CH₂)₃COCH₃ $\stackrel{\text{OH}^-}{\underset{\Lambda}{\longrightarrow}}$? Major product is COCH₃ 548. $CH_3CH_2OH \xrightarrow{Cu,573 \text{ K}} X \xrightarrow{[0]} Y \xrightarrow{Br_2,P} BrCH_2COOH$ Reaction I, II and III respectively are a) Reduction, oxidation and substitution b) Dehydration, oxidation and substitution c) Dehydrogenation, oxidation and substitution d) Dehydration, oxidation and elimination 549. Chromatographic techniques of purification can be used for: a) Coloured compounds b) Liquids c) Solids d) All of these 550. Decarboxylation of malonic acid gives: c) CH₃COOH b) COOH—COOH d) CH4 551. Which of following reactions convert acetone into hydrocarbon having same number of carbon atoms? a) Wolff-Kishner reaction b) Hofmann reaction c) Grignard reaction d) Reduction with LiAlH₄ 552. A compound $C_5H_{10}O$ gives a positive test of carbonyl group, gives a negative test with Fehling solution but gives positive haloform test and on reduction it gives normal pentane. Identify the compound a) 3-pentanone b) 2-pentanone c) 1,5-pentanediol d) None of these 553. Fruity smell is given by a) Esters b) Alcohols c) Chloroform d) Acid anhydrides 554. The reaction of a carboxylic acid gives effervescences of CO₂ with NaHCO₃. The CO₂ comes from: a) R — COOH b) NaHCO₃ c) Both (a) and (b) d) None of these 555. Hydrolysis of HCN gives: a) Acetic acid b) Formaldehyde c) Acetaldehyde d) Formic acid 556. Which of the following is an example of aldol condensation? a) $2CH_3COCH_3 \xrightarrow{Dil.NaOH} CH_3COHCH_3CH_2COCH_3$ b) $2HCHO \xrightarrow{Dil.NaOH} CH_3OH$

c) $C_6H_5CHO + HCHO \xrightarrow{Dil.NaOH} C_6H_5CH_2OH$

d) None of the above

557. Benedict's solution provides:

a) Ag+

c) Ba2+

d) Li+

558. Which of the following product is formed in the reaction

$$CH_3MgBr \xrightarrow{(i)CO_2} ?$$

a) Acetic acid

b) Methanoic acid

c) Methanol

d) Ethanal

559. The Cannizaro reaction is not given by

a) Trimethyl acetaldehyde

b) Acetaldehyde

c) Benzaldehyde

d) Formaldehyde

560. Carboxylic acids readily dissolve in aqueous sodium bicarbonate, liberating carbon dioxide. Which one of the following is correct?

a) Free carboxylic acid and its conjugate base are of comparable stability.

b) The free carboxylic acid is more stable than its conjugate base.

c) The conjugate base of the carboxylic acid is more stable than the free carboxylic acid.

d) The conjugate acid of the carboxylic acid is more stable than the free carboxylic acid.

561. CICH2COOH is heated with fuming HNO3 in the presence of AgNO3 in Carius tube. After filtration and washing the precipitate obtained is:

a) AgNO₃

b) AgCl

c) Ag₂SO₄

d) ClCH2COOAg

562. The correct order of reactivity of COgroup

in given compounds is:

a)
$$CH_3$$
 $CO>$ CH_3 $CO>$ $CO>$ CH_3 $CO>$ CH_3 $CO>$ CH_3 $CO>$ $CO>$ CH_3 $CO>$ $CO>$

b)
$$C_2H_5$$
 $CO>$ CH_3 $CO>$

c)
$$CH_3$$
 $CO>$ CH_3 $CO>$ CH_3 $CO>$ CH_3 $CO>$ CH_3

d)
$$CH_3$$
 $CO > C_2H_5$ $CO > CH_3$ $CO >$

563. Doctors detect diabetes disease by testing the presence of glucose in urine with:

a) Nessler's reagent

b) Fehling's solution

c) Fenton's reagent

d) Silver nitrate solution

564. Which reaction is used for the preparation of acetophenone?

a) Reimer-Tiemann reaction

b) Wurtz-Fittig reaction

c) Friedel-Craft's reaction

d) Cannizaro's reaction

565. Carbonyl group undergoes:

a) Electrophilic addition reactions

b) Nucleophilic addition reactions

c) Both (a) and (b)

d) None of the above

566. Carbon shows maximum capacity of catenation because:

a) Carbon shows variable valency

b) In carbon there is one extra empty d-orbital

c) C—C bond strength is very low

d) C-C bond strength is very high

F.C.F. M1 1.C. C	6			
567. The enol form of acetor	(1) 	10.67579	H C – C CHD	
		$H_2C = C - CH_2D$		
a)	b)	c)	d)	
OD	0	ОН	OH	
568. An important reaction		tion in presence of concent	rated sulphuric acid to give	
the aromatic compoun		a) Tuisusu	d) Dhanana	
a) Mesitylene	b) Mesityl oxide	c) Trioxan	d) Phorone	
569. Acetals are	13.01.41		N. I	
a) Ketones	b) Diethers	c) Aldehyde	d) Hydroxy aldehydes	
570. Azeotropes are:	1 1 11	7070 *** *040		
7.57	ch distil unchanged in comp	osition		
b) Liquids mixed in equ	(B) B			
	solutions of definite compo	sition		
	nich cannot be separated			
571. The name glacial acid i				
a) Below 16.6°C it is w				
b) It forms ice like solid				
c) It is mixed with met				
d) Pure acetic acid abo		ught in hy		
572. The conversion of CH_3 a) $K_2Cr_2O_7/H^+$	b) CO + Rh	c) KMnO ₄	d) H ₃ PO ₄	
573. The IUPAC name of tar	100 Maria 100 Cara 101 Cara 10	c) Kivilio ₄	u) n ₃ ro ₄	
	ie-1-4-dicarboxylic acid			
b) 1,4-dihydroxy butan				
c) Butane-1-4-dicarbox				
d) None of the above	sync acid			
574. The IUPAC name of cap	proic acid is:			
a) Pentanoic acid	b) Hexanoic acid	c) Heptanoic acid	d) Octanoic acid	
575. An azeotropic mixture	0.50		15 m	
distillation to separate		Trouted William Deloie Du	bjecting for fractional	
a) Anhydrous lime	b) C ₆ H ₆	c) Both (a) and (b)	d) None of these	
576. Acetaldehyde on oxida	716	.,		
a) CH ₃ COOH	b) C ₂ H ₅ OH	c) CHO·CHO	d) None of these	
577. Acetaldehyde is used:	7 - 2 - 3	•		
a) In the preparation o	f dyes			
b) In the preparation o				
c) In the preparation o	f paraldehyde			
d) All are correct	=0.00			
578. Consider the following	reactions,			
$CH_3COOH \xrightarrow{CaCO_3} A \xrightarrow{Hea}$	t R			
Compound <i>B</i> is:	D			
a) An ether	b) An alcohol	c) An aldehyde	d) A ketone	
579. Ethanal reacts with alk	2011 Jan - Branch Co. (2) 10 10 10 10 10 10 10 10 10 10 10 10 10		a) 11 hetone	
a) Polymerisation	an to give o nyarony batane	iii Tiiis Teaction is:		
b) Claisen condensation				
c) Reimer-Tiemann reaction				
d) Aldol condensation				
580. When acetic acid is dis	solved in benzene its molec	ular mass:		
a) Decreases	energeren en e	especialists in the state of the first of the state of th		
b) Increases				
6				

- c) Either decreases or increases
- d) Suffers no change
- 581. Chloral is prepared industrially by the chlorination of:
 - a) Propanone
- b) Formaldehyde
- c) Ethanol
- d) Chloroform

- 582. Paraldehyde is used as a:
 - a) Soporific
- b) Poison
- c) Polymer
- d) Dye

583. Identify the final product (*D*) of the reaction

- 584. Ketones are prepare by:
 - a) Clemmensen's reduction
 - b) Rosenmund's reduction
 - c) Oppenauer's oxidation
 - d) Cannizzaro's reaction
- 585. The correct sequence of decreasing order of reactivity of hydrolysis of acid chlorides is

a)
$$PhCOCl > p - O_2NC_6H_4COCl$$

b) PhCOCl >
$$p - \text{CH}_3\text{OC}_6\text{H}_4\text{COCl}$$

$$p - CH_3OC_6H_4COCl$$

 $p - O_2NC_6H_4COCl > PhCOCl$

$$COCl > p - CH_3OC_6H_4COCl$$

c)
$$p - O_2NC_6H_4COCl > PhCOCl$$

 $> p - CH_3OC_6H_4COCl$

$$> p - O_2NC_6H_4COCI$$

$$d) p - O_2NC_6H_4COCI > p - CH_3OC_6H_4COCI$$

$$> PhCOCI$$

- 586. When acetamide is treated with Br2 and caustic soda, the product formed is
 - a) N-bromamide
- b) Bromoacetic acid
- c) Methanamine
- d) Ethanamine

587. The product (A) of the following reaction

- 588. Nitration of salicylic acid will give:
 - a) 2,4,6-trinitophenol
 - b) 2,4,6-trinitrobenzoic acid
 - c) 2,4,6-trinitrobenzene
 - d) None of the above
- 589. In Dumas' method of estimation of nitrogen 0.35 g of an organic compound gave 55mL of nitrogen collected at 300 K temperature and 715 mm pressure. The percentage composition of nitrogen in the compound would be:
 - (Aqueous tension at 300 K = 15 mm)
 - a) 14.45
- b) 15.45
- c) 16.45
- d) 17.45

- 590. A powerful sedative made from acetaldehyde is:
 - a) Acetic anhydride
- b) Paraldehyde
- c) Acetic acid
- d) Acetamide

591. An organic compound of molecular formula C₃H₆O did not give a silver mirror with Tollen's reagent, but gave an oxime with hydroxylamine, it may be

a) $CH_3 - CO - CH_3$

b) C₂H₅CHO

c) $CH_2 = CH - CH_2 - OH$

d) $CH_3 - O - CH = CH_2$

592. Trichloroacetaldehyde was subjected to Cannizzaro's reaction by using NaOH. The mixture of the products conatains sodium trichloroacetate ion and another compound. The other compound is:

- a) 2,2,2-Trichloroethanol
- b) Trichloromethanol
- c) 2,2,2-Trichloropropanol
- d) Chloroform

593. Acetic anhydride is prepared in the laboratory by heating sodium acetate with

- a) Ethyl chloride
- b) Acetyl chloride
- c) Conc. H₂SO₄
- d) Zinc dust

594.

The compound B is

595. Which one of the following compound gives aspirin on reacting with acetic anhydride in presence of H2SO4?

596. The acid which contains the aldehyde group is

- a) Acetic acid
- b) Formic acid
- c) Benzoic acid
- d) Propionic acid
- 597. When acetyl chloride reacts with any amine, the reaction is known as:
 - a) Saponification
- b) Esterification
- c) Acetylation
- d) Condensation

598. Fehling solution is

- a) CuSO₄+lime
- b) $CuSO_4 + NaOH(aq)$ c) $CuSO_4 + Na_2CO_3$
- d) None of these

599. In the Rosenmund's reaction

$$RCOCl + H_2 \xrightarrow{Pd/BaSO_4} RCHO + HCl BaSO_4 here$$

- a) Promotes catalytic activity of Pd
- b) Removes the HCl formed in the reaction

c) Deactivates palladium

- d) Activates palladium
- 600. Formaldehyde can be manufactured from:
 - a) Natural gas
- b) Water gas
- c) Both (a) and (b)
- d) None of these

601. Which of the following methods is not employed to prepare methyl benzoate C₆H₅COOCH₃?

- a) C_6H_5COOH , $(CH_3)_2SO_4$, b) C_6H_5COCI , C_2H_5OH
- c) $C_6H_5COOH, CH_2N_2, \Delta$
- d) $C_6H_5COOC_2H_5$, CH_3OH , 1
- 602. The boiling and melting points of carboxylic acids depend on:
 - a) Hydrogen bonding
- b) Polarization
- c) Resonance
- d) All of these

603. Complete the following reaction RCOOH $\xrightarrow{P_2O_5}$?

- a) Acid anhydride
- b) Ketone
- c) Aldehyde
- d) Ester

604. Which of the following does not undergo Cannizaro's reaction?

a) Benzaldehyde b) 2-methylpropanal c) p-methoxybenzaldehyde d) 2,2-dimethylpropanal 605. The strongest acid amongst the following compound is: c) CH₃CH₂CH(Cl)COOH d) CICH2CH2CH2COOH a) CH₃COOH b) HCOOH 606. Phthalic acid $\Delta \downarrow$ $A \xrightarrow{\operatorname{NH}_3} B \xrightarrow{\operatorname{NaOH}} C \xrightarrow{\operatorname{Br}_2/\operatorname{KOH}} D \xrightarrow{\operatorname{HCl}} E$ In this reaction, the product *E* is b) Salicylic acid a) o-nitrobenzoic acid c) Anthranilic acid d) Crotonic acid 607. In the Lassaigne's test the Sulphur present in the organic compound first changes into: a) Na2SO3 b) CS₂ c) Na2SO4 d) Na2S 608. Which of the following statements is correct about a carbonyl group? a) The carbonyl carbon is sp-hybridised b) The carbonyl carbon is sp^3 -hybridised c) The three groups attached to the carbonyl carbon lie in the same plane d) The three groups attached to the carbonyl carbon lie in different planes 609. Formaldehyde and formic acid can be distinguished by: a) Tollen's reagent b) Fehling's solution c) Ferric chloride d) NaHCO3 610. Oxidation of which compound is not possible? d) $CH_3 - CH_2 - OH$ a) $CH_3 - COOH$ b) $CH_3 - CO - CH_3$ c) $CH_3 - CHO$ 611. Which type of isomerism is not common in carboxylic acid? a) Chain b) Functional c) Metamer d) Optical 612. The acidity of the compounds RCOOH, H2CO3, C6H5OH, ROH decreases in the order b) $C_6H_5OH > RCOOH > H_2CO_3 > ROH$ a) $RCOOH > H_2CO_3 > C_6H_5OH > ROH$ c) $ROH > C_6H_5OH > RCOOH > H_2CO_3$ d) $H_2CO_3 > RCOOH > C_6H_5OH > ROH$ 613. Which one of the following will undergo meta-sustitution on monochlorination? a) Ethoxybenzene b) Chlorobenzene c) Ethyl benzoate d) Phenol 614. When acetamide is hydrolysed by boiling with acid, the product obtained is b) Ethyl amine a) Acetic acid c) Ethanol d) acetamide 615. $CH_3COOH \xrightarrow{Br_2/P} Y \xrightarrow{(i)KCN} X \text{ Here,} X \text{ is}$ a) Glycollic acid b) α -hydroxy propionic acid c) Succinic acid d) Malonic acid 616. Lemon is sour due to: a) Citric acid b) Tartaric acid c) Oxalic acid d) Acetic acid 617. Both acetaldehyde and ketone react with: a) Ammoniacal AgNO3 b) Rochelle salt c) 2,4-dinitro phenylhydrazine d) All of the above 618. Self condensation of two moles of ethyl acetate in presence of sodium ethoxide yields: b) Ethyl propionate a) Methyl acetoacetate c) Ethyl butyrate d) Acetoacetic ester 619. $Me_2CHCOC_2H_5 \xrightarrow{Baeyer}$? Productc

620. Salicylic acid is treated with bromine under two different conditions.

a) Me₂CHCOOC₂H₅

$$[Y] \xrightarrow{\operatorname{Br}_2} \bigcup_{\text{Water}} \overset{\operatorname{OH}}{\longrightarrow} \underbrace{\operatorname{COOH}}_{\text{CH}_3\text{COOH}} \overset{\operatorname{IX}}{\longrightarrow} [X]$$

Predict the nature of [X] and [Y] in the above reactions,

$$(a) \bigcup_{\mathsf{Br}}^{\mathsf{OH}} \mathsf{COOH} ; \bigcup_{\mathsf{Br}}^{\mathsf{OH}} \mathsf{COOH}$$

$$(d)$$
 (b) $(cooh)$ $(cooh)$

- 621. Acetic acid on warming with hydrazoic acid in presence of conc. H₂SO₄ gives:
 - a) CH₃CONH₂
- b) CH₃NH₂
- c) CH₃COONH₄
- d) CH₃CH₂NH₂
- 622. Electrolytic reduction with lead cathode of oxalic acid yields:
 - a) Glycollic acid
 - b) Glyoxalic acid
 - c) Glycollic acid + glyoxalic acid
 - d) CH₃COOH

623. CHO + CH₂ COOR
$$\frac{\text{Pipridine}}{\Delta \text{ HOH}}$$
?

Final product and the name of the reaction is

d) None of the above

624. Complete the following reaction,

625. In the following reaction

$$RCH_2COOH \xrightarrow{Br_2/P} X \xrightarrow{Excess NH_3} Y$$

The major amounts of X and Y are

- a) RCHBrCONH2; RCH(NH2)COOH
- c) RCH2COBr; RCH2COONH4

- b) RCHBrCOOH; RCH(NH2)COOH
- d) RCHBrCOOH; RCH2CONH2

- 626. Benzaldehyde and acetone can be best distinguished using
 - a) Fehling's solution

b) Sodium hydroxide solution

c) 2, 4-DNP

d) Tollen's reagent

- a) Butanol
- Z. In the above reaction Z is
- d) Acetal
- 628. Give the order of ease of the esterification of the following acids

- a) I > II > III > IV
- b) IV > III > II > I
- c) II > I > IV > III
- d) I > II > III > IV

- 629. Which of the following statements is/are correct?
 - a) Magnesium citrate is used as antacid
 - b) Tartar emetic is used to produce nausea and vomiting in the treatment of poisoning
 - c) Cream of tarter (pot. Hydrogen tartrate) is used in baking powder
 - d) All of the above
- 630. Which of the following reaction is a condensation reaction?
 - a) HCHO →Para-formaldehyde
 - b) CH₃CHO → Paraldehyde
 - c) $CH_3COCH_3 \rightarrow Mesityl$ oxide
 - d) $CH_2 = CH_2 \rightarrow Polyethylene$
- 631. In Duma's method for determining the nitrogen content of an organic compound, the nitrogen content is determined in the form of:
 - a) Gaseous NH3
- b) NaCN
- c) Gaseous N₂
- d) $(NH_4)_2SO_4$
- 632. An organic compound containing C, H and O gives red colouration with sodium nitroprusside solution but does not reduce Tollen's reagent and yields chloroform on treating with NaOH and Cl2. The compound is
 - a) CH₃CH₂OH
- CH₃-CH-CH₃
- c) CH₃COCH₃
- d) $(CH_3)_2CH CHO$
- 633. In a Cannizaro reaction, the intermediate that will be best hydride donor is

- 634. 0.58 g of hydrocarbon on combustion gave 0.9 g water. The percentage of carbon is about:
 - a) 75.8
- b) 82.7
- c) 27.85
- d) 68.8

- 635. $C_6H_5CHO + HCN \rightarrow C_6H_5CH(CN)OH$; the product is:
 - a) Optically active
 - b) A meso compound
 - c) Racemate
 - d) Mixture of distereoisomers

636. Which is the most reactive of the following? a) Ethyl acetate b) Acetic anhydride 637. When acetamide is hydrolysed by boiling with acid, the product formed is: b) Ethyl amine a) Acetic acid acidification is a) Benzaldehyde c) Phenylacetaldehyde a) CH₃CHO b) CH₃CH₂CHO 640. Wacker method is used to convert alkene into corresponding......using PbCl2

c) C₂H₅OH

c) Acetamide

d) Acetyl chloride

d) C₆H₅CH₂CHO

d) Acetamide

638. The most reactive compound towards formation of cyanohydrin on treatment with HCN followed by

b) p-nitrobenzaldehyde

d) p-hydroxybenzaldehyde

639. Which one of the following aldehydes will not form an aldol when treated with dil. NaOH?

c) (CH₃)₃CCHO

b) Ketone a) Alcohol

c) Aldehyde

d) Acid

641. The figure given below describes a condensation polymer which can be obtained in two ways. Either treating 3 molecules of acetone (CH₃COCH₃) with conc. H₂SO₄or passing propyne (CH₃C≡CH) through a red hot tube. The polymer is:

a) Phorone

b) Mesityl oxide

c) Diacetonyl alcohol

d) Mesitylene

642. 0.5 g of an organic compound containing nitrogen on Kjeldahlising required 29 mL of N/5 H2SO4 for complete neutralization of ammonia. The percentage of nitrogen in the compound is:

a) 34.3

b) 16.2

d) 14.8

643. A nitrogen containing organic compound gave an oily liquid on heating with bromine and potassium hydroxide solution. On shaking the product with acetic anhydride, an antipyretic drug was obtained. The reactions indicate that the starting compound is

a) Aniline

b) benzamide

c) acetamide

d) nitrobenzene

644. Acid hydrolysis of Xyields two different organic compounds. Which one of the following is X?

a) CH₃COOH

b) CH₃CONH₂

c) CH₃COOC₂H₅

d) $(CH_3CO)_2O$

645. An alcohol, on oxidation, produces a ketone with the same number of carbon atoms. When the ketone is oxidized, it yields an acid with a lesser number of carbon atoms. The alcohol could be a

a) Primary alcohol

b) Secondary alcohol

c) Tertiary alcohol

d) None of these

 $A_{+\text{H}_2\text{SO}_4 \text{ (conc)}}$ (i) KMnO₄/KOH, D (ii) dil H₂SO₄

In this reaction, C is

a)
$$O_2N$$
 O_2 O_2N O_2 O_2 O_3 O_2

647. At room temperature formaldehyde is: b) Liquid c) Solid d) None of these 648. Positive Beilstein test shows that: a) Halogens are surely present b) Halogens are absent c) Halogens may be present d) None of the above 649. Among the following, the most acidic is a) CH₃COOH b) ClCH2COOH c) Cl2CHCOOH d) Cl2CHCH2COOH 650. In question 178 step (4) cab be carried out with NaNO₂ + dil. HCl. The other products of the step are: a) NO_2 b) NH₃ c) $N_2 + H_2O$ d) RCH2NO2 651. In question 178 an intermediate involved in step (3) is: a) R— CH_2CO_2H b) R—CH₂COONH₄ c) R -CH₂CN d) $R - CH_2 - N = C = 0$ 652. Acetyl chloride is reduced to acetaldehyde by: a) Na $-C_2H_5OH$ b) LiAlH₄ c) H₂/Pd —BaSO₄ d) H2/Ni 653. The compound having least solubility in water is: a) Methanol b) Acetaldehyde c) Acetone d) Acetophenone 654. 2-bromopropanoic acid when heated with alcoholic KCN gives an organic compound which on further acid hydrolysis gives the compound A. Hence, A will be: CH3-CH-COOH CH3-CH-COOH b) CH₃CH(COOH)₂ CH2NH2 NH₂ Identify the final product X COOC₂H₅ COOC₂H₅ COOC₂H₅ 656. RCOOH \rightarrow RCH₂OH. This mode of reduction of an acid to alcohol can be affected only by: a) Zn/HCl b) Na-alcohol c) Aluminium isopropoxide and isopropyl alcohol d) LiAlH₄ 657. An organic compound X is oxidised by using acidified $K_2Cr_2O_7$. The product obtained reacts with phenyl hydrazine but does not answer silver mirror test. The possible structure of *X* is $CH_3 - C - CH_3$ a) CH₃CH₂OH c) (CH₃)₂CHOH d) CH₃CHO 658. Formic acid reduces ammoniacal AgNO $_3$ solution and Fehling's solution because: a) All organic acids do so b) Formic acid has aldehyde like structure c) Formic acid is an aliphatic acid d) None of the above statement is correct 659. Vapour density of a volatile substance is 4(CH₄ = 1). Its molecular weight would be: 660. The final product (III) obtained in the reaction

$$CH_3$$
 CH_3
 CH_3

 $_{a)}^{CH_3}$ CH₃- $_{C}^{C}$ -CH=CHCH₂CH₂OH

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

CH₃
CH₃—CH₂—CH—CH₂OH

- 661. Which one of the following compounds, each with two carbons will have the highest boiling point?
 - a) C₂H₅OH
- b) $CH_3 O CH_3$
- c) CH₃COOH
- d) CH₃CHO

662. The major product obtained in the reaction

- 663. In organic chemistry the element which is estimated by difference:
 - a) N

b) 0

c) 3

- d) H
- 664. In estimation of carbon and hydrogen, the saphnolite resin absorbs:
 - a) N₂

- b) H_2O_2
- c) CO₂

d) CO2 and H2O2

- 665. $(CH_2CO)_2O + RMgX \xrightarrow{H_2O}$?
 - a) ROOC(CH₂)COOR
- b) RCOCH2CH2COOH
- c) RCOOR
- d) RCOOH
- 666. Which reaction is suitable for the preparation of α —chloroacetic acid?
 - a) Hell-Volhard-Zelinsky reaction
- b) Nef reaction

c) Stephen's reaction

- d) Perkin condensation
- 667. A fractionating column is used in:
 - a) Sublimation
- b) Distillation
- c) Fractional distillation d) Chromatography
- 668. Ni formate is best used as catalyst in:
 - a) Preservation of fruits
 - b) Esterification
 - c) Dyeing wool and cotton fabric
 - d) Hydrogenation of oil
- 669. The term carboxylic is a contraction of two terms:
 - a) Carbonyl and amine
 - b) Carbonyl and hydroxyl
 - c) Hydroxyl and carboxyl
 - d) Carboxyl and hydroxyl
- 670. Boiling point of a compound does not depend on:
 - a) Hydrogen bonding in the compound
 - b) Solubility of the compound in water
 - c) Size of the molecule
 - d) Polarity of the molecule

671.
$$O$$

$$CH_3$$

$$Hydrolysis$$

$$[X]$$

What is X''?

a)
$$CH_3 - CH_2 - CH_2 - CH_2 - COOH$$

672. In the following reaction,

$$CH_3COCl \xrightarrow{BaSO_4} X$$

Identify X out of the following

- a) Acetaldehyde
- b) Propionaldehyde
- c) Acetone
- d) Acetic anhydride

673. Which acid is an optically active?

- a) Propionic acid
- b) 2-chloropropionic acid
- c) 3-chloropropionic acid
- d) Acetic acid
- 674. Two substances when separated out on the basis of their extent of adsorption by one material, the phenomenon is:
 - a) Chromatography
 - b) Paper chromatography
 - c) Sublimation
 - d) Steam distillation
- 675. Which of the following statement is correct?
 - a) o-nitrophenol can be separated from p-nitrophenol because of intermolecular hydrogen bonding in o-nitrophenol
 - m-nitrophenol vcan be separated from p-nitrophenol because of intermolecular hydrogen bonding in o-nitrophenol
 - o-hydroxybenzoic acid can be separated from p-hydrobenzoic acid because of intramolecular hydrogen bonding in o-hydroxybenzoic acid
 - d) o-hydroxybenzoic acid can be separated from p-hydrobenzoic acid because of intermolecular hydrogen bonding in o-hydroxybenzoic acid
- 676. The major product of the following reaction is

- a) A hemiacetal
- b) An acetal
- c) An ether
- d) An ester
- 677. The molecular formula of chlorinated acetone produced in the distillation with bleaching powder is:
 - a) CH₃COCl
- b) CCl₃COCl₃
- c) CH₂ClCOOH
- d) CCl₃COCH₃

- 678. Which one of the following contains acetic acid?
 - a) Vinegar
- b) Molasses
- c) Coal-tar
- d) Butter

679. The compound which on reduction with LiAlH₄ gives two alcohols:

- a) CH₃COOCH₃
- b) CH₃COOC₂H₅
- c) CH₃COCH₃
- d) CH3CHO

680. Salicylic acid gives a compound known as oil of winter green when treated with

- a) CH₃COCl
- b) фОН
- c) CH₃OH
- d) PCl₅

681. The compound easily soluble in water is: a) Stearic acid b) Benzene c) Aniline d) Ethanol 682. Carbon atom of carbonyl gp. in aldehyde is of: c) 3° d) None of these a) 1° 683. Identify *D* in the following reaction CH \equiv CH + CH₃MgBr $\xrightarrow{\text{-CH}_4}$ $A \xrightarrow{\text{(i) CO}_2}$ $(\text{ii) H}_3\text{O}^+$ a) HOOC - CH2 - COOH b) $OHC - CH_2 - COOH$ d) HO - CH = CH - COOHc) OHC - CH $_2$ - CHO 684. Which reagent is useful in separating benzoic acid from phenol? a) Dilute HCl b) Dilute H₂SO₄ c) 5% NaOH d) 5% NaHCO3 685. Acetone and acetophenone can be identified by: a) Burning the compound on spatula b) Adding a saturated solution of NaHSO₃ c) HCN d) All are correct 686. Which of the following will produce only one product on reduction with LiAlH4? a) CH₃OCOCH₂CH₃ b) CH₃CH₂OCOCH₂CH₃ c) CH₃CH₂OCOCH₃ d) CH3CH2OCOCH2CH2CH3 687. Main product of the reaction, $CH_3CONH_2 + HNO_2 \rightarrow$ is: b) CH₃CH₂NH₂ d) CH₃COONH₄ a) CH₃COOH c) CH₃NH₂ 688. In presence of sodium ethoxide two molecules of ethyl acetate interact to form acetoacetic ester, this process is known as: a) Aldol condensation b) Claisen condensation c) Polymerization d) None of these 689. When calcium acetate is distilled, it will produce which of the following compound? a) CH₃COOH b) CH₃CHO c) CH₃COCH₃ d) All of these 690. The main source of organic compounds is: b) Petroleum a) Coal-tar c) Both (a) and (b) d) None of these 691. The strongest acid is: c) CHCl2COOH a) CH₂FCOOH b) CH₂ClCOOH d) CHF2COOH 692. Which one of the following is the mechanism of hydrolysis of ethyl benzoate by refluxing with dil. Aq. NaOH solution? a) Acyl oxygen bond cleavage, unimolecular b) Acyl oxygen bond cleavage, bimolecular c) Alkyl oxygen bond cleavage, unimolecular d) Alkyl oxygen bond cleavage, bimolecular 693. $\phi COCH_3 \xrightarrow{(i)Br_2 1 \text{ eq.}} [X] \xrightarrow{OH^-} [Y]$. Here Y is

694. Formaldehyde can be distinguished from acetaldehyde by:

- a) Fehling's solution
- b) Schiff's reagent
- c) Ammonia
- d) Ammoniacal AgNO3

695. 20 mL of CH₄ is burnt with 60 mL of O₂. If all measurements are made at the same P and T, what is the volume of unreacted oxygen?

- a) 10 mL
- b) 20 mL
- c) 30 mL
- d) 40 mL

696. The aldol condensation of CH₃ - CHO results in the formation of

$$CH_3 - C - CH - CH_3$$

$$CH_3 - CH - CH_2 - CH$$

 Π O OH

$$CH_3 - CH_2 - CH - CH$$

d)
$$CH_3 - CH_2OH + CH_3OH$$

- 697. Oxalic acid may be distinguished from tartaric acid by:
 - a) NaHCO3
 - b) Ammoniacal silver nitrate
 - c) Litmus paper
 - d) Phenolphthalein

698.

When HCHO is allowed to stand. It is a white solid. The polymer is:

- a) Trioxane
- b) Formose
- c) Para formaldehyde
- d) Metaldehyde

- 699. Aldehydes are produced in atmosphere by:
 - a) Oxidation of secondary alcohols
 - b) Reduction of alkenes
 - c) Reaction of oxygen atoms with hydrocarbons
 - d) Reaction of oxygen atoms with O3
- 700. Main product of the reaction is,

- a) $CH_3COOH + H_2$
- b) CH₃CH₂COOH
- c) CH₃CH(OH)CH₃
- d) CH₃CH₂OH

- 701. Which is not an organic compound?
 - a) Hexane
- b) Urea
- c) Spirit
- d) Ammonium cyanate

- 702. In organic compound phosphorus is estimated as:
 - a) Magnesium pyrophosphate Mg₂P₂O₇
 - b) H₃PO₄
 - c) $Mg_3(PO_4)_2$
 - d) P_2O_5
- 703. Wolff-Kishner reduction, reduces
 - a) -COOH group
- b) $-C \equiv C \text{group}$
- c) -CHO group
- d) -0 group

- 704. RMgX on reaction with O₂ followed by hydrolysis gives:
 - a) RH

- b) RCOOH
- c) ROR
- d) ROH

- 705. Aldehyde with NH2. NH2 forms
 - a) Hydrazones
- b) Aniline
- c) Nitrobenzene
- d) None of these
- 706. Steam distillation is a better method of purification for.....compounds.
 - a) Liquids
- b) Steam volatile
- c) Non-volatile
- d) Miscible with water
- 707. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is
 - a) CH₃COOC₂H₅ + NaCl

b) $CH_3COONa + C_2H_5OH$

c) $CH_3COCI + C_2H_5OH + NaOH$

- d) $CH_3Cl + C_2H_5COONa$
- 708. Liquid benzene burns in oxygen according to $2C_6H_6 + 15O_2 \rightarrow 12CO_2$ (g) $+ 6H_2O$ (g). How many litre of O₂ at STP are needed to complete the combustion of 39 g of liquid benzene?
 - a) 11.2 litre
- b) 22.4 litre
- c) 84 litre
- d) 74 litre

709. The final product of the following sequence of reaction is

$$\begin{array}{c|c}
CH_2 & Br_2 \\
CH_2 & CCl_4
\end{array} \xrightarrow{KCN} B \xrightarrow{H^+/H_2O} C$$

$$CH_2-COOH & CH_2-B$$

710. The product obtained when

711. Identify Z in the series,

$$\text{CH}_{3}\text{CHO} \xrightarrow[\text{Dil.H}_{2}\text{SO}_{4}]{\text{MnO}_{4}^{-}} X \xrightarrow[\text{BOCl}_{2}]{\text{SOCl}_{2}} Y \xrightarrow[\text{Heat}]{\text{CH}_{3}\text{COONa}} Z:$$

- a) CH3 · CO · CH2COONa
- b) (CH₃CO)₂O
- c) CH2Cl · CO · O · COCH3
- d) CHCl2CO · O · COCH3

712. When an acyl chloride is heated with Na salt of a carboxylic acid, the product is an

- a) ester
- b) Anhydride
- c) Alkene
- d) Aldehyde

713. Which produces NH₃ on reaction with caustic soda?

- a) Ethyl amine
- b) Dimethyl amine
- c) Acetamide
- d) Aniline

714. The IUPAC name of crotonaldehyde is:

- a) Propenal
- b) But-2-en-l-al
- c) Butan-2-en-l-al
- d) None of these

715. The elimination of CO₂ from a carboxylic acid is known as:

- a) Hydration
- b) Dehydration
- c) Decarboxylation
- d) Carboxylation

716. Oxidation product of 'X' (molecular formula C_3H_6O) is 'y' (molecular formula $C_3H_6O_2$). The compound 'y' is

:

- a) Acetic acid
- b) Formic acid
- c) Propionic acid
- d) Butyric acid

717. HVZ reaction leads to the formation of:

- a) Acetic acid
- b) Formic acid
- c) Chlorosubstituted acids
- d) Oxalic acid

718. Which of the following acids acts as reducing agent?

- a) COOH-COOH
- b) Tartaric acid
- c) Formic acid
- d) All of these

719. Which part of —COOH group is involved in the reaction of acid with metals?

- a) Only H-atom
- b) Only —OH part
- c) Both (a) and (b)
- d) None of these

720. HCHO and HCOOH are distinguished by treating with:

- a) Tollen's reagent
- b) NaHCO₃
- c) Fehling's solution
- d) Benedict solution

721. Formula of diacetone alcohol is:

- a) (CH₃)₂C(OH)CH₂COCH₃
- b) CH₃CHOHCH₂COCH₃
- c) (CH₃)₂CHOHCH₂COCH₃
- d) None of the above

722. Mercuric chloride is reduced to mercurous chloride by:

- a) Acetic acid
- b) Carbon tetrachloride c) Formic acid
- d) Ammonia

723.	8. An organic compound containing C,H and N have the percentage 40, 13.33 and 46.67 respectively. Its					
	empirical formula may be		-) CIL N	4) CIL N		
724	a) C ₂ H ₇ N	b) C ₂ H ₇ N ₂	c) CH ₄ N	d) CH ₅ N		
/24.	Pick up the correct stater		.; al. Al. a			
	a) Secondary alcohols are oxidized to ketones in which the number of carbon atoms remains unchanged					
	b) TEL is a good anti-kno	77				
	- [1] [1] [1] [1] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	tones use sp ² -hybrid carb	on atoms for their formatio	n		
725	d) All of the above					
/25.		the following series of rea	ctions,			
	$CH_3COOH \xrightarrow{NH_3} A \xrightarrow{\Delta} B \xrightarrow{P_2}$	$\stackrel{o_5}{\rightarrow} C$:				
	a) CH ₄	b) CH ₃ OH	c) Acetonitrile	d) Ammonium acetate		
726.	Certain unripe fruits like	green apples and plums co	ontain:			
	a) H ₂ SO ₄	b) HCl	c) CH ₃ COOH	d) Malic acid		
727.	1 0	Y.				
	The reaction Br	СООН				
	is an example of:					
	a) Wolf rearrangement					
	b) Favorskii rearrangement					
	c) Steven's rearrangement					
	d) Wagner-Meerwin rearrangement					
728	Which of the following is					
120.	a) C ₂ H ₅ OH	b) CH ₃ COOH	c) C ₆ H ₅ OH	d) CICH ₂ COOH		
729				u) cicii2coon		
, ,,	. For a compound to be purified by steam distillation: a) Impurities must be non-volatile					
		npletely immiscible with w	vater			
		of the liquid must be suffici				
	d) All of the above are co		citaly ingli			
730		$\stackrel{\text{2l}}{\to} X \stackrel{4[0]}{\longrightarrow} Y$; Identify Y' is	194 140			
, 50.				A25 251 V V		
	a) Sulphonal	b) Trional	c) Tetronal	d) None of these		
731.	Amides are:	sacare as ordinary		Marie (2/20) postavine a s		
	a) Amphoteric	b) Acidic	c) Basic	d) Neutral		
732.		ing away the moisture bec		1970		
	a) Absorbs H ₂ O	b) Adsorbs H ₂ O	c) Reacts with H ₂ O	d) None of these		
733.	Consider the acidity of th	The state of the s				
	(i) PhCOOH	(ii) $o - NO_2C_6H_4COO$				
	$(iii)p - NO_2C_6H_4COOH $ $(iv)m - NO_2C_6H_4COOH$					
	Which of the following or			VIZZATVYSNISKI AZNIKALIOS JETSKISKI NY		
700040777	a) $I > II > III > IV$	I < III < VI < III (d	c) $II > IV > IN > III$	d) $II > III > IV > I$		
734.		ng with aqueous alcoholic I		W2 S S		
	a) Cyanobenzene	b) Cyanohydrin	c) Benzoyl cyanide	d) Benzoin		
735.			to you. These may be separa	70		
	7.53		c) Fractional distillation	d) Steam distillation		
736.	- [일다] 이 10 10 10 10 10 10 10 10 10 10 10 10 10	obtained by the oxidation	of propionaldehyde?			
	a) Acetic acid					
	b) Formic and acetic acid					
	c) Propionic acid					

d) n-propyl alcohol

737. Acetaldehyde and aceto	ne differ in their reaction w	rith:	
a) NaHSO ₃	b) NH ₃	c) PCl ₅	d) Phenyl hydrazine
738. Which of the following r		ange benzaldehyde to cinna	그렇게 하지 어린 이렇게 나가 아니라 하는 것이 되었다면 하다니?
a) Perkin's reaction		b) Knoevenagel reaction	
c) Reformatsky reaction	and ketones	d) Benzoin condensation	
739. In the estimation of nitr		18 g of an organic compour	nd gave 224 mL of N ₂ at NTI
	gen in the compound is abo	1574 IN	2
a) 20.0	b) 11.8	c) 47.5	d) 23.7
740. p-cresol reacts with chlo	oroform in alkaline medium	n to give the compound A w	hich adds hydrogen cyanide
		그렇게 하시겠다. 그리지 뭐 되었다. 아이는 아무리 맛있다면 아무리 하는데 어떻게 했다.	c acid. The structure of the
carboxylic acid is			
ÇH₃		CH ₃	
		CH ₂ COOH	
		b)	
a)		¹⁾	
CH₂COOH		Ť.	
ÓH		ОН	
ÇH₃		CH ₃	
		CH(OH).CO	OH
c)		d)	
Т `cн(он).co	ЭH	I OH	
741. Butan-2-one can be con	verted to propanoic acid by	2,701,50	
a) Tollen's reagent	b) Fehling's solution	c) NaOH/I ₂ /H ⁺	d) NaOH/NaI/H+
742. By passing water gas (C		10.70	
a) HCHO	b) HCOOH	c) CH ₃ CHO	d) CO ₂ and H ₂ O
743. An organic compound C		19.1 (a) 1.1 (b) 1.1 (c) 1.1 (
Kishner reaction to give		zone, gives positive louoioi	in test and undergoes won
a) Pentanol	b) Pentan-2-one	c) Pentan-3-one	d) 3-methylbutan-2-one
744. Consider the reaction:	b) I chair is one	o, roman o one	a, o moury routen a one
$RCHO + NH_2NH_2 \rightarrow RCH$	$H = N - NH_2$		
What sort of reaction is			
a) Electrophilic addition			
b) Free radical addition			
77	tion – elimination reaction		
d) Nucleophilic addition			
745. Lindlar's catalyst is:			
a) Ni + BaSO ₄	b) Pd—CaCO ₃ + BaSO ₄	c) Hg + BaSO ₄	d) Ni + ZnSO ₄
746. In a Cannizaro's reaction			vision of the second se
a) HCHO + HCHO	1) 6 11 6110 - 116110) au aua - uaua	" сно
	b) $C_6H_5CHO + HCHO$	c) $CH_3CHO + HCHO$	d) CHO
747. When propanone reacts	with chlorine, it forms:		
a) Trichloro propanone			
b) Hexachloro propanor	ie		
c) Trichloro ethanol			
d) Trichloro propanal			
748. Benzyl alcohol and sodi	um benzoate is obtained by	the action of sodium hydro	oxide on benzaldehyde. This
reaction is known as			
a) Perkin's reaction		b) Cannizaro's reaction	

c) Sandmeyer's reaction d) Claisen condensation 749. The structural formula of the compound isomeric with acetone is: a) CH₃CH₂CHO b) CH₃CHO c) CH₃CH₂OH d) None of these 750. An organic compound contains, C, H and S. When C and H are to be estimated the combustion tube at the exit should contain a: a) Copper spiral b) Silver spiral c) Potassium chloride d) Lead chromate 751. In the preparation of an ester the commonly used dehydrating agent is: a) Phosphorus pentoxide b) Anhydrous calcium chloride c) Anhydrous aluminium chloride d) Concentrated sulphuric acid 752. A compound A has a molecular formula C2 Cl3 OH. It reduces Fehling's solution and on oxidation, gives a monocarboxylic acid B. A can be obtained by the action of chlorine on ethyl alcohol. A is a) Chloroform b) Chloral d) Monochloroacetic acid c) Methyl chloride 753. In glycine the basic group is: c) -COOH b) —NH[⊕] d) —coo⊖ a) $-NH_2$ 754. 3-hydroxybutanal is formed when (X) reacts with (Y)in dilute (Z) solution. What are X, Y and Z? Za) CH₃CHO, $(CH_3)_2CO$, NaOH b) CH₃CHO, CH₃CHO, NaCl NaOH c) $(CH_3)_2CO$, $(CH_3)_2CO$, HCl d) CH₃CHO, CH₃CHO, 755. Which of the following have high melting points? a) Acids containing even number of carbon atoms b) Acids containing odd number of carbon atoms c) Both (a) and (b) d) None of the above 756. $A \xrightarrow{\text{HCN}} B \xrightarrow{\text{H}_3\text{O}^+} \text{lactic acid. Identify } A$ b) CH₃CHO d) CH₃COCH₃ a) HCHO c) C₆H₅CHO 757. Predict the product, OH 758. The reverse of esterification is known as: a) Acidolysis b) trans-esterification c) Hydrolysis d) Neutralization 759. Identify the reaction which is used to obtain β -hydroxy ketone. a) Condensation reaction b) Aldol condensation d) Cannizaro reaction c) Cross aldol condensation 760. 0.14 g of an acid required 12.5 mL of 0.1 N NaOH for complete neutralization. The equivalent weight of the acid is: a) 45 b) 56 c) 63 d) 112 761. Which of the following contains pungent odour? b) Higher aldehydes c) Lower aldehydes d) None of these 762. Which of the following cannot reduce Fehling solution?

a) HCOOH b) H₃CCOOH c) HCHO d) H₃CCHO 763. Which of the following on treatment with 50% aq. NaOH gives alcohol and acid? b) CH₃CH₂CH₂CHO c) CH₃COCH₃ a) C₆H₅CHO d) C₆H₅CH₂CHO 764. The reaction $C_6H_5CHO + CH_3CHO \rightarrow C_6H_5CH=CHCHO + H_2O$ is called: a) Benzoin condensation b) Claisen condensation c) Aldol condensation d) Condensation 765. Which of the following does not undergo benzoin condensation? a) Benzene carbaldehyde b) p-toluene carbaldehyde c) Phenylethanal d) 4-methoxyhbenzaldehyde 766. When acetaldehyde is heated with Fehling solution, a red precipitate is formed. Which of the following is a) Cu₂O b) Cu c) CuO d) CuSO₄ 767. Benzaldehyde reacts with ammonia to form a) Benzaldehyde ammonia b) Urotropine c) Hydrobenzamide d) Ammonium chloride 768. The reactant (X) in the reaction, CH₃COONa (CH₃CO)₂O Cinnamic acid is CH₂OH CHO 769. Ketones are less reactive than aldehydes because: a) C=0 group is less polar in ketones b) Of electromeric effect c) Of steric hindrance to the attacking reagent d) None of the above 770. Dialkyl cadmium reacts with a compound to form a ketone. The compound is: a) Acid b) Acid chloride c) Ester d) CO 771. The reaction of 1 mole each of p-hydroxyacetophenone and methyl magnesium iodide will give COCH₃ a) CH₄ + IMgO COCH₃ 772. Which of the following has the most acidic hydrogen? b) 2,4-hexanedione c) 2,5-hexanedione d) 2,3-hexanedione a) 3-hexanone 773. Which of the following will be most readily dehydrated under acidic conditions? ÓН 774. Sodium salt of formic acid on strong heating followed by acid hydrolysis yields:

b) HCOOH

b) Alkyl isonitrile

c) Aldoxime

c) COOH-COOH

d) CH₃CHO

d) Alkyl nitrile

775. $RCOOH \stackrel{H_2O^+}{\longleftarrow} X \stackrel{[H]}{\longrightarrow} RCH_2NH_2$

Identify the *X* in the above sequence

a) HCHO

a) Alkane nitrile

776. Which of the following acids has the smallest dissociation constant?

- a) CH₃CHFCOOH
- b) FCH2 CH2 COOH
- c) BrCH2CH2COOH
- d) CH3CHBrCOOH

777. Salol (phenyl salicylate) is used as an:

- a) Insecticide
- b) Analgesic
- c) Ointment
- d) Intestinal antiseptic

778. Aldehydes and ketones will not form crystalline derivatives with:

- a) NaHSO3
- b) Phenyl hydrazine
- c) Semicarbazide hydrochloride
- d) Dihydrogen sodium phosphate

779. Pyruvic acid is obtained by

- a) Oxidation of acetaldehyde cyanohydrin
- b) Oxidation of formaldehyde cyanohydrin
- c) Oxidation of acetone cyanohydrin
- d) None of the above

780. A compound (A) (molecular formula – C_8H_8O) on treatment with $NH_2OH \cdot HCl$ gives B and C rearrange to give D and E respective on treatment with acid. B, C, D and E are all isomers of molecular formula (C_8H_9NO). When D is boiled with the alcoholic KOH, an oil F (C_6H_7N) separates out. F reacts rapidly with CH_3COCl to give back D. On the other hand, E on boiling with alkali followed by acidification gives a white solid $G(C_7H_6O_2)$. Identify A

781. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is

a) CH₃COOC₂H₅ + NaCl

b) $C_3COONa + C_2H_5OH$

c) CH₃COCl + C₂H₅OH + NaOH

d) $CH_3Cl + C_2H_5COONa$

782.

Identify the reactant.

- a) H_2O
- b) HCHO
- c) CO

d) CH₃CHO

783. Carbon atom of carbonyl gp. in ketone is of:

a) 1

b) 2°

c) 3°

d) None of these

784. Formic acid is not a representative member of the carboxylic acids because:

- a) It is the first member of the series
- b) It does not contain alkyl group
- c) It is a gas
- d) It contains an aldehydic group while the other acids do not have the aldehydic group

785. CH₃CHO + H₂NOH→CH₃—CH=N—OH The above reaction occurs at:

- a) pH = 1
- b) pH = 4.5
- c) Any value of pH
- d) pH = 12

786. β-hydroxy butyraldehyde is an example of:

- a) Aldol
- b) Dio

- c) Hemiacetal
- d) Acetal

787. O-R

- a) An ester
- b) An anhydride
- c) Acetal
- d) Hemiacetal

788. Hydrogenation of C₆H₅CHOHCOOH over Rh — Al₂O₃ catalyst in methanol gives:

CLICK HERE

- a) C₆H₅CH₂COOH
- b) C₆H₁₁CHOHCOOH
- c) C₆H₅CHOHCH₂OH
- d) C₆H₁₁CH₂COOH

- 789. CH₃COCH₃ and CH₃CH₂CHO can be distinguished by b) Tollen's reagent
- c) NaHSO3
- d) 2, 4 DNP
- 790. The molecular formula of methanoic acid and propanoic acid differs by:
 - a) C2H4
- b) CH₃

c) CH₂

- d) CH2CH2CH3
- 791. The most suitable method of separation of 1: 1 mixture of ortho and para nitrophenols is:
 - a) Distillation
- b) Crystallization
- c) Sublimation
- d) Chromatography

792. Identify the product Z in the series,

$$CH_3CN \xrightarrow{Na/C_2H_5OH} X \xrightarrow{HNO_2} Y \xrightarrow{[O]} Z$$
:

- a) CH₃CHO
- b) CH₃CH₂CONH₂
- c) CH₃COOH
- d) CH₃CH₂NHOH

- 793. Which of the following is not true about the urea?
 - a) It can be stored easily

- b) It should be applied at sowing time
- c) It cannot be used for all types of crops and soils
- d) The cost of production of urea is cheap

794. In the reaction

$$H_3C$$
 NH_2
 (ii)
 $NaOH/Br_2$
 T

The structure of the product T is

- 795. The term hypnone is used for:
 - a) Benzophenone
- b) Acetophenone
- c) Acetaldehyde
- d) None of these

- 796. The end product of $CH_3COOH \xrightarrow{CaCO_3} A \xrightarrow{Heat} B \xrightarrow{NH_2OH} C$
 - a) Acetaldehyde
- b) Acetoxime
- c) Formaldehydeoxime
- d) Methyl cyanide
- 797. The boiling points of aldehydes and ketones lie in between alkanes and alcohols of comparable masses because:
 - a) Alkanes are polar
 - b) Aldehydes and ketones are non-polar

Alkanes are non-polar and aldehydes and ketones contain polar

- C=0 group and lower alcohols have H-bonding.
- d) Alkanes are held together by weak van der Waals'

forces (being non-polar), aldehydes and ketones contain

polar C=O group and held together by strong

dipole-dipole attraction and lower alcohols have

H-bonding, which is stronger than

dipole-dipole attraction

- 798. A compound (60 g) on analysis gave C=24g, H=4g and O=32g. Its empirical formula is:
 - a) $C_2H_4O_2$
- b) C_2H_2O
- c) CH₂O₂

799. Alkaline hydrolysis of esters is......than acid hydrolysis.

- b) Slower
- d) None

800. Main product obtained from the reaction of ammonia and formaldehyde is

- a) Formic acid
- b) Methylamine
- c) Methanol
- d) Urotropine

801. The gas evolved on heating alkali formate with soda-lime is

a) CO

- b) CO₂
- c) Hydrogen
- d) Water vapour

802. 2, 4-dichlorophenoxy acetic acid is used as

- a) Fungicide
- b) Insecticide
- c) Herbicide
- d) Moth repellant

803. Benzaldehyde undergoes Claisen's condensation with another aldehyde to give cinnamaldehyde. The aldehyde is:

- a) Formaldehyde
- b) Acetaldehyde
- c) Crotonaldehyde
- d) Propanaldehyde

804. An organic compound X gives a red precipitate on heating with Fehling's solution. Which one of the following reactions yields X as a major product?

a) HCHO
$$\xrightarrow{(i)CH_3MgI}$$

b)
$$C_2H_5Br + AgOH \xrightarrow{\Delta}$$

c)
$$2C_2H_5Br + Ag_2O \xrightarrow{\Delta}$$

d)
$$C_2H_2 + H_2O \xrightarrow{40\% H_2SO_4} \frac{40\% H_2SO_4}{1\% HgSO_4}$$

805.

$$\begin{array}{c}
CH_3OH(excess) \\
HCl
\end{array}$$
A, A is

806. The Cannizzaro's reaction is not given by:

- a) Trimethylacetaldehyde
- b) Acetaldehyde
- c) Benzaldehyde
- d) Formaldehyde

807. Which of the following represents the correct order of the activity in the given compounds?

- $CH_3COOH > BrCH_2COOH > ClCH_2COOH$ $> FCH_2COOH$
- b) $FCH_2COOH > CH_3COOH > BrCH_2COOH$ $> ClCH_2COOH$
- c) $BrCH_2COOH > ClCH_2COOH > FCH_2COOH$ > CH₃COOH
- $_{\rm d)}$ FCH₂COOH > $_{\rm ClCH_2COOH}$ > $_{\rm BrCH_2COOH}$

808. Ellution is the process for:

- a) Crystallization of compound
- b) Separation of compound
- c) Extraction of compound
- d) Distillation of compound

809. Pyroligneous acid contains:

- a) 2% acetic acid
- b) 50% acetic acid
- c) 10% acetic acid
- d) 20% acetic acid

810.

is the anhydride in

- a) 1, 2-butane diol
- b) 2, 2-butane diol
- c) 2, 3-butane diol
- d) 1, 1-butane diol

812. Consider the following reaction;

$$CH_3Br + Mg \xrightarrow{Ether} A \xrightarrow{HCHO} B \xrightarrow{HOH} C$$
 compound C is:

- a) Acetic acid
- b) Acetaldehyde
- c) Ethyl alcohol
- d) Formic acid

813. In the reaction sequence,

$$A \xrightarrow{\text{CH}_3\text{CH}_2\text{MgBr}} B \xrightarrow{\text{H}_3\text{O}} C_5\text{H}_{12}\text{O}$$

Compound 'A' is

- a) 1-propanol
- b) Propanal
- c) Ethanol
- d) 2-propanol

814. Identify Zin the sequence

$$CH_3COONH_4 \xrightarrow{\Delta} X \xrightarrow{P_2O_5} Y \xrightarrow{H_2O/H^+} Z$$

- a) CH₃CH₂CONH₂
- b) CH₃CN
- c) CH₃COOH
- d) $(CH_3CO)_2O$
- 815. The major organic product formed in the following reaction is:

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & &$$

- 816. Compound 'A' (molecular formula C_3H_8O) is treated with acidified potassium dichromate to form a product 'B' (molecular formula C_3H_6O). 'B' forms a shining silver mirror on warming with ammoniacal silver nitrate. 'B' when treated with an aqueous solution of $H_2NCONHNH_2$. HCl and sodium acetate gives a product 'C'. Identify the structure of 'C'.
 - a) $CH_3CH_2CH=NNHCONH_2$

$$CH_3-C=NNHCONH_2$$

$$CH_3-C=NCONHNH_2$$

- c) | CH₃
- d) CH₃CH₂CH=NCONHNH₂
- 817. Which of the following intermediate species is not formed in the reaction of acrylic acid with HBr to give β -bromopropionic acid?

$$(\mathsf{CH}_2 = \mathsf{CH} - \mathsf{COOH} \xrightarrow{\mathsf{HBr}} \mathsf{BrCH}_2 \mathsf{CH}_2 \mathsf{COOH}) ?$$

$$_{c)}$$
 $_{CH_2}=CH-\overset{\Theta}{C}\overset{OH}{<}_{OH}$

$$_{\rm d)} \stackrel{\rm \tiny \Theta}{\rm CH}_2 - {\rm CH} = {\rm C} \stackrel{\rm \tiny OH}{<}$$

818. The oxidation of benzyl chloride with lead nitrate gives

a) Benzaldehyde

b) Benzyl alcohol

c) p-chloro benzaldehyde

d) Benzoic acid

819.
$$R$$

$$C = O \xrightarrow{HCN} (A) \xrightarrow{NH_3} (B) \xrightarrow{Hydrolysis} (C)$$

Compound (C) in above reaction is:

- a) α-hydroxy acid
- b) α-amino acid
- c) a-amino alkanol
- d) α-amino β-hydroxy acid
- 820. The conversion

Can be effected using

- a) LiAlH4 and then H+
- b) NaBH₄ and then H⁺ c) $H_2/Pt C$
- d) None of these

In the above reaction, A is

822. The major product H of the given reaction sequence is:

$$CH_{3}-CH_{2}-CO-CH_{3}\xrightarrow{\Theta_{CN}}G\xrightarrow{95\%H_{2}SO_{4}}H$$

$$CH_{3}-CH=C-COOH$$
a)
$$CH_{3}$$

$$CH_{3}-CH=C-CN$$
b)
$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}-CH=C-COOH$$

$$CH_{3}$$

$$CH_{3}-CH=C-COOH$$

$$CH_{3}$$

$$CH_{3}-CH=C-COOH$$

$$CH_{3}$$

$$CH_{3}-CH=C-COOH$$

$$CH_{3}$$

823. Which of the following compounds is not obtained when phthalic anhydride is treated with N₃H?

$$c$$
) NH $c=0$

- 824. Chlorine does not react with:
 - a) Methanal
- b) CH₃CHO
- c) Propanone
- d) C₆H₅CHO
- 825. An organic acid when heated strongly with P2O5, gave rise to a colourless gas which burns with a pale blue flame. The acid is:
 - a) Acetic acid
- b) Formic acid
- c) Formalin
- d) Benzoic acid

- 826. Bakelite polymer is formed by the polymerization of
 - a) Methanal and salicyaldehyde

b) Methanal and hydroxy benzene

c) Ethanal and hydroxy benzene

- d) Ethanal and cinnamic acid
- 827. Propionic acid with Br₂ | P yields a dibromo product. Its structure would be:

b) CH2Br-CHBr-COOH

- d) CH₂Br-CH₂-COBr
- 828. The difference between aldol condensation and Cannizzaro's reaction is that:
 - a) The former takes place in the presence of α -H-atom
 - b) The former takes place in the absence of α -H-atom
 - c) The former takes place in the presence of β -H-atom
 - d) None of the above
- 829. Collin's reagent causes the conversion:
- a) $\coin \cite{CO} \longrightarrow \cite{CHOH} \longrightarrow \cite{CHOH} \longrightarrow \cite{COOH}$ b) $\cite{CHOH} \longrightarrow \cite{COOH} \longrightarrow \cie$
- 830. Cyanohydrin of which compound gives lactic acid on hydrolysis?
 - a) Acetone
- b) Acetaldehyde
- c) Propanal
- d) HCHO
- 831. Arrange phenol (I), cyclohexanol (II), 2, 4, 6-trinitrophenol (III) and acetic acid (IV) in order of acidity
 - a) III>IV>I>II
- b) I>II>III>IV
- c) III>I>II>IV
- d) II>I>IV>III

832. In the following reaction,

The structure of the major product X is

b)

$$d)$$
 O_2N N H

- 833. Preparation of β -hydroxy ester is favoured by:
 - a) Cannizzaro's reaction

b) Reformatsky rea	ction				
c) Claisen condensa	c) Claisen condensation				
d) Wittig reaction	d) Wittig reaction				
834. The enolic form of	834. The enolic form of acetone contains:				
a) 9 σ -bonds, 1π -bo	ond and 2 lone pairs				
b) 8 σ -bonds, 2π -bo	b) 8 σ -bonds, 2π -bond and 2 lone pairs				
c) 10σ -bonds, 1π -bond and 1 lone pair					
d) 9 σ -bonds, 2π -bo	d) 9 σ -bonds, 2π -bond and 1 lone pairs				
835. Monocarboxylic aci	ids (saturated) are regarded a	soxidation products of	paraffins.		
a) First	b) Second	c) Third	d) Fourth		
836. Which of the follow	ring forces explain the boiling	point of aldehydes and ketor	nes?		
a) Hydrogen bondi	ng				
b) van der Waals' fo	orces				
c) Dipole-dipole at	traction				
d) None of the abov	re				
837. Which can reduceR	$COOH \rightarrow RCH_2OH$?				
a) NaBH ₄	b) Na/C ₂ H ₅ OH	c) $BH_3/THF/H_3O^+$	d) H ₂ / catalyst		
838. Ethanol vapours ar	e passed over heated copper a	at 300°C and product is treat	ed with aqueous NaOH. The		
final product is:					
a) Aldol					
b) β-hydroxy butyr	aldehyde				
c) Both (a) and (b)					
d) None of the abov	re				
839. The refluxing of (Cl	H ₃) ₂ NCOCH ₃ with acid gives				
a) $(CH_3)_2NH + CH_3$	₃ СООН	b) $(CH_3)_2NCOOH + CH_4$			
c) $2CH_3OH + CH_3C$	ONH ₂	d) $2CH_3NH_2 + CH_3COO$	Н		
$840. \text{ OCH} - \text{CHO} \xrightarrow{\text{OH}^-}$	HOH ₂ C – COOH. The reaction	given is			
a) Aldol condensati	ion b) Knovengel reaction	c) Cannizaro reaction	d) None of these		
	naracteristic functional group				
a) Keto group	b) Ester group	c) Basic group	d) None of these		
842. Sodium acetamide	smells like:		The Part of the Control of the Contr		
a) Garlic	b) Rotten egg	c) Pleasant	d) Reminiscents of mice		
843. On mixing ethyl ace	etate with aqueous sodium chl	oride, the composition of the	resultant solution is:		
a) $CH_3Cl + C_2H_5CO$	ONa				
b) $CH_3COONa + C_2$	H ₅ OH				
c) $CH_3COCI + C_2H_5$	OH + NaOH				
d) $CH_3COOC_2H_5 +$	NaCl				
844. The final product for	ormed when acetaldehyde is r	educed with sodium and alco	ohol is:		
a) Ethylene	b) Ethyl alcohol	c) Ethene	d) All of these		
845. Oxalic acid when re	educed with zinc and H ₂ SO ₄ gi	ves			
 a) Glyoxalic acid 	b) Glyoxal	c) Glycolic acid	d) glycol		
846. Which of the follow	ring functional groups, cannot	be reduced to alcohol using	NaBH ₄ in ethanolic solution?		
a) $R - O - R$	b) RCOCl	c) R - COOH	d) R — CHO		
847. A carboxylic acid is	converted into its anhydride	using			
 a) Thionyl chloride 	ł	b) Sulphur chloride			
c) Sulphuric acid		d) Phosphorus pentoxid	e		
848. Ammonium format	e on heating yields:				
a) Ammonia					
b) Formamide					
c) Formic acid					

CLICK HERE >>>

- d) Ammonium carbonate
- 849. By combining the two calcium salts of carboxylic acids we are preparing 2-butanone. Find the correct pair of the following
 - a) Calcium formate + calcium propanoate
- b) Calcium acetate + calcium propanoate
- c) Calcium acetate + calcium acetate
- d) Calcium formate + calcium acetate
- 850. Aldehydes and ketones form addition products with:
 - a) Phenyl hydrazine
- b) Hydrazine
- c) Semicarbazide
- d) Hydrogen cyanide
- 851. Lactic acid on oxidation with Fenton's reagent gives main product:
 - a) CH₃COOH
- b) H₂C₂O₄
- c) CH₃COCOOH
- d) None of these
- 852. An aromatic compound (A), C_8H_9Br reacts with $CH_2(COOC_2H_5)_2$ in then presence of C_2H_5ONa to give (B) which on refluxing with oil H₂SO₄ gives(C), a monobasic acid. (C)On vigorous oxidation gives benzoic acid. What is the structure of (A)?

- 853. Urotropine has the composition:
 - a) $(CH_2)_4N_6$
- b) $(CH_2)_5N_5$
- c) $(CH_2)_6N_4$
- d) $(CH_3)_6N_5$
- 854. 0.75 g platinic chloride of a mono-acid base on ignition gave 0.245 g platinum. The molecular weight of the base is:
 - a) 75.0
- b) 93.5
- c) 100
- d) 80.0

- 855. An aliphatic hydroxy acid is:
 - a) Maleic acid
- b) Mandelic acid
- c) Malonic acid
- d) Malic acid
- 856. Carbonyl compounds when treated with sodium bisulphite solution generally a crystalline sodium bisulphite addition product is formed but which of the following carbonyl compound not forms crystalline addition product?
 - a) HCHO
- b) CH₃CHO
- c) CH₃COCH₃
- d) C2H5COC2H5
- 857. In presence of iodine catalyst, chlorine reacts with acetic acid to form:

858. In the following reaction sequence, the correct structures of E, F and G are:

$$Ph \xrightarrow{O} O H \xrightarrow{Heat} [E] \xrightarrow{I_2} [F] + [G]$$

(*implies 13C labelled carbon)

a)
$$E = Ph$$
 CH_3
 $F = Ph$
 ONa
 $G = CHI_3$

$$G = CHI_3$$

$$G = CHI_3$$

c)
$$E = Ph$$

$$CH_3 \qquad F = O$$

$$ONa \qquad G = CHI_3$$

(d)
$$E = Ph$$

$$CH_3$$

$$F = Ph$$

$$O \otimes \Theta$$

$$O \otimes A$$

$$O \otimes A$$

859. Compound having molecular formula C₃H₆O may be:

- a) Cyclic ether
- b) Carbonyl compound
- c) Unsaturated ether or unsaturated alcohol
- d) All of the above

860. In the estimation of nitrogen by Duma's method 0.59 g of an organic compound gave 112 mL nitrogen at NTP. The percentage of nitrogen in the compound is about:

- a) 23.7
- b) 11.8

d) 47.5

861. Propanone does not undergo:

- a) Oxime formation
- b) Hydrazone formation with hydrazine
- c) Cyanohydrin formation with HCN
- d) Reduction of Fehling's solution
- 862. 2DCDO $\stackrel{\text{OH}^-}{\longrightarrow}$ [X] and [Y] are
 - a) DCOO-, D2CHOH
- b) HCOO-, CH₃OH
- c) HCOO⁻, CD₃OH
- d) DCOO⁻, CD₃OH

863. A typical compound undergoes Cannizzaro's reaction and aldol condensation. It is:

- a) (CH₃)₂CHCHO
- b) НСНО
- c) C₆H₅CHO 864. Formaldehyde when reacted with methyl magnesium bromide gives
- d) CH₃CHO

b) CH3COOH a) C_2H_5OH

- c) HCHO
- d) CH₃CHO

865. Among the following which has lowest pK_a values:

- a) CH₃COOH
- b) HCOOH
- c) (CH₃)₂CHCOOH
- d) CH₃CH₂COOH

866. Ethane can be obtained from ethanal in one step by:

- a) Na-Hg + water
- b) Zn-Hg + conc. HCl
- c) Aluminium isopropoxide and isopropyl alcohol
- d) LiAlH₄ + ether

867. The end product 'C' in the following sequence of chemical reactions is

$$\mathsf{CH}_3\mathsf{COOH} \xrightarrow{\mathsf{CaCo}_3} A \xrightarrow{\mathsf{Heat}} B \xrightarrow{\mathsf{NH}_2\mathsf{OH}} C$$

- a) Acetaldehyde oxime b) Formaldehyde oxime c) Methyl nitrate
- d) Acetoxime

868. Which set of products is expected on reductive ozonolysis of the following diolefin?

$$CH_3$$

 $|$
 $CH_3CH = C - CH = CH_2$
a) $CH_2CHO: CH_2COCH = CH_2$

a) CH_3CHO ; $CH_3COCH = CH_2$

b) $CH_3CH = C(CH_3)CHO; CH_2O$ d) CH3CHO; CH3COCH3; CH2O

- c) CH₃CHO; CH₃COCHO; CH₂O 869.

The compound (X) is

- a) CH₃ COOH
- b) BrCH₂ COOH
- c) $(CH_3CO)_2O$
- d) CHO COOH

870. In the sequence, $A \xrightarrow{NH_2OH} CH_3CH = NOH \xrightarrow{Reduction}$

A and B are

a) CH₃CH₂OH, CH₃CH₂NH₂

b) CH₃CHO, CH₃NH - CH₃

c) CH₃CHO, CH₃CH₂NH₂

d) CH₃CH₂OH, CH₃NHCH₃

871. Partial oxidation of methane gives:

- a) HCHO
- b) **НСООН**
- c) H₂O and CO₂
- d) CO and H2O

872. Ethyl acetate is obtained when methyl magnesium bromide reacts with

- a) Ethyl formate
- b) Ethyl chloroformate
- c) Acetyl chloride
- d) Carbon dioxide

873. Collin's reagent is used to convert

a) >C=O →>CHOH

b) $-CH_2OH \rightarrow -CHO$

c) $-CHO \rightarrow -COOH$

d) $-CHO \rightarrow -CH_2OH$

874.

identify X and Y

a)
$$\leftarrow$$
 HCOOH b) \leftarrow HCOOH c) \leftarrow HCOOH c) \leftarrow HCOOH c) \leftarrow HCOOH c) \leftarrow CH₂OH \leftarrow CH₃COOH \leftarrow CH₃CHO

875. Which can be reduced to corresponding hydrocarbon by Zn/HCl?

- a) Butan-2-one
- b) Acetic acid
- c) Acetamide
- d) Ethyl acetate

876. The product obtained when acetic acid is treated with phosphorus trichloride is:

877. OH COOH HNO_3 X Br_2 , water Y

X and Y respectively are

- a) Picric acid, 2, 4, 6-tribromophenol
- b) 5-nitrosalicylic acid, 5-bromosalicylic acid

c) o-nitrophenol, o-bromophenol

d) 3, 5-dinitrosalicylic acid, 3, 5-dibromosalicylic acid

878. The final products of oxidation of isopropyl alcohol are:

- a) CH₃COCH₃ + HCOOH
- b) CH₃CH₂COOH + HCOOH
- c) CH₃COOH + HCOOH
- d) CH3COOH + CH3CH2COOH

879. The main product obtained in the reaction of acetamide and HNO2 is

- a) CH₃CN
- b) CH₃NC
- c) CH₃NH₂
- d) CH₃COOH

880. Which gives a ketone with a Grignard reagent?

- a) Formaldehyde
- b) Ethyl alcohol
- c) Methyl cyanide
- d) Methyl iodide

881. Self condensation of acetaldehyde, in the presence of dilute alkalies gives

- a) An acetal
- b) An aldol
- c) Mesitylene
- d) Propionaldehyde

882. Hybridization of carbon in carbonylic group is:

a) sp

b) sp⁴

c) sp^3

d) None of these

883. CF_3COOH X. Identify X

CLICK HERE >>

^{884.} $CH_3CH_2CONH_2 \xrightarrow{X} CH_3CH_2CH_2NH_2, X$ is

- a) Pt/H₂
- c) LiAlH₄
- d) Zn

885. Ethyl ester CH₃MgBr \rightarrow P. The product P will be:

886. When benzaldehyde reacts with acetophenone in presence of sodium hydroxide, then product is

a) $C_6H_5CH = CHCOC_6H_5$

b) C₆H₅COCH₂C₆H₅

c) $C_6H_5CH = CHC_6H_5$

d) $C_6H_5CH(OH)COC_6H_5$

b) Formaldehyde and acetaldehyde

d) Formaldehyde and benzaldehyde

- 887. Acetaldehyde cannot exhibit:
 - a) Lodoform test
- b) Benedict's test
- c) Tollen's test
- d) Lucas test

888. Cannizaro reaction is performed by

- a) Formaldehyde

c) Benzaldehyde 889. The reaction,

 $CH_3COOH + Cl_2 \xrightarrow{p} CICH_2COOH + HCl$ is called

- a) Hell-Volhard-Zelinsky reaction
- b) Wurtz reaction

c) Rosenmund reaction

d) Hunsdiecker reaction

890. In a Cannizzaro's reaction, the intermediate that will be best hydride donor is:

891. Aldehydes can be conveniently separated from alcohols by treating with:

- a) Na₂SO₄
- b) NaCN
- c) NaHSO₃
- d) Schiff's reagent

892. One having high vapour pressure at temperature below its m. p.:

- a) Benzoic acid
- b) Salicylic acid
- c) Citric acid
- d) All of these

893. Which of the following compounds would be the main product of an aldol condensation of acetaldehyde and acetone?

- a) $CH_3CH = CH.CHO$
- b) $CH_3CH = CHCOCH_3$
- c) $(CH_3)_2C = CH. CHO$
- d) $(CH_3)_2C = CHCOCH_3$

894. Reaction between (C2H5)2Cd and CH3COCl leads to the formation of

- a) Diethyl ketone
- b) Ethyl methyl ketone
- c) Dimethyl ketone
- d) Acetaldehyde

895. Which of these does not contain -COOH group?

- b) Benzoic acid
- c) Picric acid
- d) Salicylic acid

896. The ease of reduction of C₆H₅COCl (i), C₆H₅CHO (II), C₆H₅COCH₃ (III) and

 $C_6H_5-\ddot{C}-OC_2H_5$ (IV) by hydrogen over a palladium catalyst follows the order

- a) I > II > III > IV
- b) IV > III > II > I
- c) II > III > I > IV
- d) III > II > I > IV

897. Schiffs and Piria method is used for the estimation of:

- a) Nitrogen
- b) Sulphur
- c) Halogens
- d) Oxygen

898. Select the strongest acid:

- a) CF₃COOH
- b) CCl₃COOH
- c) CH₃COOH
- d) CBr3COOH

899. The most acidic of the following is

	a) ClCH ₂ COO
900.	The formula
	is called:

b) C₆H₅COOH

c) CD₃COOH

d) CH₃CH₂COOH

of a compound which gives simple whole number atomic ratio in one molecule of a compound

a) Structure formula

b) Molecular formula

c) Empirical formula

d) Projection formula

901. Which of the following is a better reducing agent for the following reduction?

RCOOH → RCH2OH

a) SnCl₂/HCl

b) NaBH₄/ether

c) H₂/Pd

d) B_2H_6/H_3O^+

902. Alkaline hydrolysis of C₄H₈Cl₂ gives a compound which on heating with NaOH and I₂ produces a yellow precipitate of CHI3. The compound should be

a) CH₃CH₂CH₂CHO

903. The most appropriate reagent to distinguish between acetaldehyde and formaldehyde is

a) Fehling's solution

b) Tollen's reagent

c) Schiff's reagent

d) Iodine in presence of base

904. Which will form two oximes with NH2OH?

a) CH₃COCH₃

b) CH₃CH₂COCH₃

c) CH₃CH₂COCH₂CH₃ d) C=O

905. What is the final product of the following reaction?

906. The reaction of acetaldehyde with Tollen's reagent gives

a) Silver acetate

b) Methyl alcohol

c) Formaldehyde

d) Acetic acid

907. Aldol condensation is given by:

a) Aldehydes only having α-hydrogen atom

b) Aldehydes and ketones having α-hydrogen atom

c) Ketones only having α-hydrogen atom

d) Aldehydes having α-hydrogen atom

908. Isoelectric point is the pH at which:

a) An amino acid becomes acidic

b) An amino acid becomes basic

c) Zwitter ion has positive charge

d) Zwitter ion has zero charge

909. Ascorbic acid is a/an:

a) Vitamin C

b) Enzyme

c) Protein

d) None of these

910. Lacrymator or tear gas is:

a) C₆H₅COCl

b) $C_6H_5OC_6H_5$

c) C₆H₅COCH₂Cl

d) C₆H₅COCH₃

911. Which acid derivatives on hydrolysis will give brown precipitate with Nessler's reagent?

a) Acid chloride

b) Acid anhydride

c) Acid amide

d) All of these

CLICK HERE

912. In a set of the given reactions, acetic acid yielded a product C.

$$CH_{3}COOH + PCl_{5} \rightarrow A$$

$$A \xrightarrow{C_{6}H_{5}} B \xrightarrow{C_{2}H_{5}MgBr} C$$

$$ether$$

Product C would be

a)
$$C_2H_5$$

a) $CH_3CH(OH)C_6H_5$ b) | c) $CH_3CH(OH)C_2H_5$ d) $CH_3COC_6H_5$ $CH_3-C(OH)C_6H_5$

- 913. Formic acid:
 - a) Is immiscible with water
 - b) Reduces ammoniacal silver nitrate
 - c) Is a weak acid nearly three and a half times weaker than acetic acid
 - d) Is prepared by heating potassium hydroxide
- 914. The number of aldol reaction(s) that occurs in the given transformation is:

- b) 2 a) 1 915. Reactivity of acids in esterification follows the order:
 - a) $HCOOH > CH_3COOH > RCH_2COOH > R_2CHCOOH > R_3CCOOH$
 - b) $CH_3COOH > HCOOH > R_3CCOOH > R_2CHCOOH > RCH_2COOH$
 - c) R_3 CCOOH > R_2 CHCOOH > RCH $_2$ COOH > CH $_3$ COOH > HCOOH
 - d) None of the above
- 916. The most suitable reagent A, for the reaction

is/are

a) 0_3

b) H₂O₂

c) NaOH - H₂O₂

d) m-chloroperbenzoic acid

d) 4

- 917. Three of the following four reactions are due to one similar feature of carbonyl compounds, while the fourth one is different. Which one is fourth?
 - a) Aldol condensation

b) Knoevenagel reaction

c) Witting reaction

- d) Haloform reaction
- 918. The relative reactivities of acyl compounds towards nucleophilic substitution are in the order of:
 - a) Ester > Acyl chloride > Amide > Acid anhydride
 - b) Acid anhydride > Amide > Ester > Acyl chloride
 - c) Acyl chloride > Ester > Acid anhydride > Amide
 - d) Acyl chloride > Acid anhydride > Ester > Amide
- 919. With the help of following Grignard synthesis which carboxylic acid is formed?

$$CH_2 = CHCH_2Br \xrightarrow{Mg/Ether} \xrightarrow{(i) CO_2} \xrightarrow{(ii) H_3O^+} ?$$

- a) $CH_2 = CHCH_2COOH$ b) $CH_3CH_2CH_2COOH$
- c) $CH_2 = CHCOOH$
- d) $CH_3CH = CH COOH$

- 920. Oxalic acid on treatment with conc. H₂SO₄ gives:
 - a) $CO + H_2O_2$
- b) $H_2O + CO + CO_2$
- c) $HCOOH + CO_2$
- d) $HCOOH + CO_2 + O_2$
- 921. The reaction product of the compound 'A' with excess of methyl magnesium iodide followed by acidification yields t-butanol. The compound A is:

- a) Methanal
- b) Ethanal
- c) Propanal
- d) Methyl ethanoate
- 922. The correct order of increasing acid strength of the compounds:
 - $(A)CH_3CO_2H$
 - (B)MeOCH₂CO₂H
 - $(C)CH_3CO_2H$

(D)
$$\stackrel{\text{Me}}{\longrightarrow}$$
 CO_2H

is:

- a) B < D < A < C
- b) D < A < C < B
- c) D < A < B < C
- d) A < D < C < B

- 923. Which is obtained by the oxidation of propional dehyde?
 - a) Acetic acid
 - b) Formic acid and acetic acid
 - c) Propanoic acid
 - d) n-Propyl alcohol
- 924. Acetone and acetaldehyde can be identified by treatment with:
 - a) NaHSO₃
- b) NaCN
- c) NaOH + I_2
- d) $Ag(NH_3)_2^+$
- 925. The presence of carbon in an organic compound can be shown by
 - a) Heating with copper which goes black
 - b) Burning it to produce green edge flame
 - c) Heating it with copper oxide to convert it into CO₂
 - d) None of the above
- 926. Choose the incorrect statement
 - a) Carboxylic acids have higher boiling points than those of alcohols of similar molecular weight
 - b) Carboxylic acids have lower boiling points than those of alcohols of similar molecular weight
 - c) Carboxylic acids (C_1 to C_4) are soluble in water
 - d) The melting points of carboxylic acids increase or decrease in an irregular manner
- 927. The increasing order of the rate of HCN addition to compounds A D is
 - IV. HCHO
 - V. CH₃COCH₃
 - VI. PhCOCH₃
 - VII. PhCOPh
 - a) A < B < C < D
- b) D < B < C < A
- c) D < C < B < A
- d) C < D < B < A

- 928. Benzoin is
 - a) Compound containing an aldehyde and a ketonic group
- b) α , β -unsaturated acid

c) α -hydroxy aldehyde

- d) α -hydroxy ketone
- 929. Highest pH value among the following is that of:
 - a) Gastric juice
- b) Lemon juice
- c) Human blood
- d) Pepsi cola

- 930. Molecular weight of phorone is equal to
 - a) 2 × molecular weight of acetone molecular weight of water
 - b) $3 \times$ molecular weight of accetone $-2 \times$ molecular weight of water
 - c) 3 × molecular weight of acetone molecular weight of water
 - d) $2 \times \text{molecular weight of acetone} 2 \times \text{molecular weight of water}$

CHO 931.

- a) H₂/Ni and NaOH
- b) H₂/Ni and hydrazine c) H₂/Ni, LAH
- d) None of theses

932. OH
$$CH_3$$
 $C=0$ CH_3 CH_3 CH_3 $CH-OH_3$

The reaction is known as

a) MPV reaction

b) Oppanauer oxidation

c) Tischenko reaction

- d) Gattermann Koch reaction
- 933. Raw juice in sugar factories is generally concentrated by:
 - a) Vacuum distillation
- b) Steam distillation
- c) Sublimation
- d) Crystallization
- 934. Which of the following converts carbonyl compounds into hydrocarbons?
 - a) H₂ / P
- b) LiAlH₄
- c) K₂Cr₂O₇ /H₂SO₄
- d) Zn Hg/HCl
- 935. Two molecules of an aldehyde react with a concentrated solution of caustic soda and produces one molecule of an alcohol and acid each, which one is the aldehyde?
- a) Acetaldehyde
- b) Formaldehyde
- c) Propionaldehyde
- d) Butyraldehyde

936.

$$2 \bigcirc \frac{OH^{-}}{\Delta}?$$

product is

- 937. Schiff's reagent is:
 - a) Magenta solution decolourised with sulphurous acid
 - b) Magenta solution decolourised with chlorine
 - c) Ammoniacal cobalt chloride solution
 - d) Ammoniacal manganese sulphate solution
- 938. The compound which is not formed during the dry distillation of a mixture of calcium formate and calcium acetate is
- a) Methanal
- b) Propanal
- c) Propanone
- d) Ethanal

939. The reaction

$$RCOOH + N_3H \xrightarrow{Conc.H_2SO_4} RNH_2 + CO_2 + N_2$$
 is called

- a) Lossen reaction
- b) Schmidt reaction
- c) Curtius reaction
- d) Ullmann reaction

- 940. The IUPAC name of H-C-(CH $_2$) $_4$ COOH is:
 - a) 6-oxohexanoic acid
 - b) Hexan-1-al-6-oic acid
 - c) 1-aldo-hexanoic acid
 - d) 6-aldo-hexan-1-oic acid
- 941. The product formed in the reaction

d) None of these

- 942. Fuels from crude oil are separated from one another by:
 - a) Fractional distillation b) Crystallization
- c) Steam distillation
- d) Selective adsorption
- 943. Propanoic acid on warming with Cl₂ in presence of red P gives:
 - a) CH₃CH₂COCl
- b) CH₃CH₂Cl
- c) CH₃CHClCOOH
- d) CH2CICH2COOH
- 944. The aldol condensation of acetaldehyde results in the formation of:

- d) CH3CH2OH + CH3COOH
- 945. Which one of the following can produce hydrogen when treated with metallic sodium?
 - a) $(CH_3)_2NH$
- b) CH₃NH₂
- c) $C_6H_5NH_2$
- d) CH₃CONH₂
- 946. Identify the correct order of boiling points of the following compounds,

 $CH_3(CH_2)_2CH_2OH$; $CH_3(CH_2)_2CHO$;

 $CH_3(CH_2)_2COOH$:

3

- a) 1 > 2 > 3
- b) 3 > 1 > 2
- c) 1 > 3 > 2
- d) 3 > 2 > 1
- 947. Organic compounds are studied separately from inorganic compounds because:
 - a) They occur in plants and animals
 - b) These are combustible and have complex structures
 - c) These are the compounds of carbon
 - d) The number of organic compounds is very large
- 948. Give IUPAC name of the product, when acetamide is heated with anhydrous phosphorus pentoxide.
 - a) Ethyl amine
- b) Propane nitrile
- c) Cyano methane
- d) Ethane nitrile
- 949. Acetamide is treated with the following reagents separately. Which one of these would yield methyl amine.
 - a) $NaOH + Br_2$
- b) Sodalime
- c) Hot conc. H₂SO₄
- d) PCl₅

950.

 CH_3

The compounds $CH_3 - C = CH - CH_3$ on reaction with $NalO_4$ in the presence of $KMnO_4$ gives

a) CH₃COCH₃

b) $CH_3COCH_3 + CH_3COOH$

c) $CH_3COCH_3 + CH_3CHO$

- d) $CH_3CHO + CO_2$
- 951. When a ketone is condensed into an aldol, the reagent used is:
- b) NaHCO₃
- c) Br₂ water
- d) Cl₂
- 952. Amides contain >C=O group, yet they do not give characteristic reactions of >C=O group because
 - a) They dimerise

b) Of resonance

c) They posses cyclic structure

- d) Of attached alkyl group
- 953. Which of the following acids (1 mol) does not give cyclic anhydride on heating
 - a) Adipic acid
- b) Terephthalic acid
- c) Succinic acid
- d) Phthalic acid

- 954. Which of the aldehyde is most reactive?
 - a) C₆H₅CHO

b) CH₃CHO

c) HCHO

d) All are equally reactive

955. An ester (X) molecular formula $C_{11}H_{14}O_2$ was treated with LAH when it forms two compounds (A) and (B) with molecular formula C₉H₁₂O and C₂H₆O respectivity (A) on heating with an acid forms $C_9H_{10}(C)$. (C) on oxidation with KMnO₄ forms terephthalic acid. Compound (X) is

- 956. Which of the following is present in tea as well as in bark of a tree?
 - a) Tannic acid
- b) Oxalic acid
- c) Cellulose
- d) Caffeine

- 957. Waxes are long chain compounds belonging to the class:
- b) Alcohols
- c) Esters
- d) Ethers

958. Which of the following is correct for carbonyl compounds?

- b) **C-0

- 959. Which of the following has most acidic hydrogen?
 - a) 3-hexanone
- b) 2,4-hexanedione
- c) 2,5-hexanedione
- d) 2,3-hexanedione

- 960. Which acid gives wine red colour with neutral FeCl₃?
 - a) Propanoic acid
- b) Acetic acid
- c) Formic acid
- d) None of these
- 961. An organic compound is fused with fusion mixture and extracted with HNO3. The extract gives yellow precipitate with ammonium molybdate. It show the presence of which element?
 - a) P
 - b) As
 - c) Both P and As
 - d) May be P or As or both
- 962. Which acid is produced in the following reaction?

$$CH_3$$
— C — H + HCN $\longrightarrow A \xrightarrow{H_3O^+} B$

- a) Maleic acid
- b) Lactic acid
- c) Tartaric acid
- d) Oxalic acid

963. A and B in the following reaction are

$$R \longrightarrow C \longrightarrow R' \xrightarrow{\text{HCN}} A \xrightarrow{B} C \xrightarrow{\text{CH}_2\text{NH}_2}$$
a) $A = RR' C \longrightarrow R \xrightarrow{\text{CN}} A \xrightarrow{B} C \xrightarrow{\text{CH}_2\text{NH}_2}$
b) $A = RR' C \longrightarrow R \xrightarrow{\text{COOH}} A \xrightarrow{\text{COOH}} C \xrightarrow{\text{COOH}} C \xrightarrow{\text{COOH}} A \xrightarrow{\text{COOH}}$

- 964. Amino acid usually exists in the form of Zwitter ions, which consists of:
 - a) The basic group -NH2 and the acidic group -COOH
 - b) The basic group —NH₃⁺ and the acidic group —CO₂⁻
 - c) The basic group —CO₂ and the acidic group —NH₃+
 - d) No basic or acidic groups as such
- 965. Which of the following do not form addition compounds with ammonia?
 - a) HCHO
- b) CH₃COCH₃
- c) CH₃CHO
- d) None of these

966. Identify D in the following reaction

CH=CH+CH₃MgBr
$$\xrightarrow{-CH_4}$$
 $A\xrightarrow{(i) CO_2}$ B
 $A\xrightarrow{\text{HgSO}_4}$
 $A\xrightarrow{\text{HgSO}_4}$
 $A\xrightarrow{\text{HgSO}_4}$

a) HOOC - CH2 - COOH

b) $OHC - CH_2 - COOH$

c) $OHC - CH_2 - CHO$

d) HO - CH = CH - COOH

967. What reagent would be needed to bring about each step of following synthesis?

- a) Hg²⁺, H₂SO₄, OH⁻
- b) KMnO₄/H₂SO₄, OH⁻
- c) H₂Cr₂O₇, dry HCl
- d) O3, Zn, H2O, OH-

968. Etard's reaction involves the preparation of benzaldehyde from

- a) Toluene
- b) Ethyl benzene
- c) Benzoyl chloride
- d) Sodium benzoate

969. The Hell-Volhard-Zelinsky reaction is used for preparing

- a) β -halo acid
- b) γ -halo acid
- c) α-halo acid
- d) Acid halide

970. It acetyl chloride is reduced in presence of $BaSO_4 + Pd$, the product formed is:

- a) CH₃CHO
- b) CH₃CH₂OH
- c) CH₃COOH
- d) CH₃COCH₃

971. The end product of the reaction,

$$CH_3OH \xrightarrow{Cu} A \xrightarrow{NaOH} B$$
 is:

- a) Alkane
- b) Carboxylic acid
- c) Ketone
- d) Sodium slat of carboxylic acid

972. Aldehydes on reaction with hydroxylamine gives:

- a) Aldoxime
- b) Hydrazone
- c) Aminohydroxide
- d) Semicarbazone

973. In which of the below reaction do we find α , β - unsaturated carbonyl compounds undergoing a ring closure reaction with conjugated dienes?

a) Perkin reaction

b) Diels-Alder reaction

c) Claisen rearrangement

d) Hofmann reaction

974. When an aldehyde was heated with alkali, a part of it was converted into alcohol and a part of it into an acid. The aldehyde is:

- a) An aliphatic aldehyde other than HCHO
- b) An aliphatic aldehyde or salicylaldehyde
- c) An aromatic aldehyde other than salicylaldehyde
- d) An aromatic aldehyde or HCHO
- 975. In the reaction,

$$C_2H_5OC_2H_5 + CO \xrightarrow{BF_3} X$$

What is X?

- a) Diethyl carbonate
- b) Ethyl carbonate
- c) Diethyl peroxide
- d) Ethyl propionate

976. The correct order of decreasing acid strength of trichloroacetic acid (*A*), trifluoroacetic acid (*B*), acetic acid (*C*) and formic acid (*D*) is:

a)
$$A > B > C > D$$

b)
$$A > C > B > D$$

c)
$$B > A > D > C$$

d)
$$B > D > C > A$$

977. The product of acid hydrolysis of *P* and *Q* can be distinguished by:

- a) Lucas reagent
- b) 2,4-DNP
- c) Fehling's solution
- d) NaHSO₃

978. Acetone is used in:

- a) Face creams
- b) Vanilla
- c) Nail polishes
- d) Sweet smelling erasers

979. A colourless water soluble organic liquid decomposes sodium carbonate and liberatesCO₂. It produces black precipitate with Tollen's reagent. The liquid is

- a) Acetaldehyde
- b) Acetamide
- c) Formic acid
- d) Acetone

980. The conversion of benzaldehyde into benzyl alcohol takes place by

a) Fittig reaction

b) Wurtz Fitting reaction

c) Wurtz reaction

- d) Cannizaro's reaction
- 981. What is the oxidation number of carbonyl carbon in acetophenone?
 - a) +3

b) +1

c) + 2

d) Zero

982. Acetic acid on heating with urea gives:

- a) Acetamide, carbon dioxide and ammonia
- b) Ammonium carbonate and carbon
- c) Ammonium acetate, acetamide and carbon dioxide
- d) None of the above

983. C₆H₅CHO on reacting with Cl₂ gives:

- a) C₆H₅CHCl₂
- b) C₆H₅COOH
- c) C₆H₅CH₂OH
- d) C₆H₅COCl

984. In sodium extract test of organic compounds, the nitrogen of an organic compound is converted into:

- a) Sodamide
- b) Sodium cyanide
- c) Sodium nitrite
- d) Sodium nitrate

985. At the isoelectric point for amino acid the species present are:

d) R-CH-COO

986. CH₃COCl reacts with:

- a) C_6H_5OH
- b) $C_6H_5NH_2$
- c) Salicylic acid
- d) All of these

987. Stinges of bees, red ant and wasps contain:

- a) Formaline
- b) Formic acid
- c) Acetic acid
- d) Formaldehyde

988. A colourless organic compound gives brisk effervescences with a mixture of sodium nitrite and dil. HCl. It could be

- a) Oxalic acid
- b) Acetic acid
- c) Urea
- d) Glucose

989. Which of the following or	n oxidation gives an acid co	ntaining two carbon atoms	?									
a) Ethanol	b) Ethane nitrile	c) Ethanamide	d) Ethanamine									
990. Which of the following ha	as highest b.p.?		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1									
a) C ₂ H ₅ OH	b) CH ₃ COOH	c) CH ₃ COCH ₃	d) HCOOCH ₃									
991. $C_6H_5CHO \xrightarrow{NH_3}$?	Service Control of the Control of th											
	L) C II MIICH	-) C II CII NII	J) C II NIIC II									
a) (C ₆ H ₅ CHN) ₂ CH. C ₆ H ₅		c) C ₆ H ₅ CH ₂ NH ₂	d) $C_6H_5NHC_6H_5$									
992. Cyclohexanone is subject	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	보이지는 10개를 받는 것이 없다는 Hard Hard Hard 이 사람들이 모르는 Hard Hard Hard Hard Hard Hard Hard Hard										
a) Cyclohexane	b) Cyclohexanal	c) Cyclohexadiene	d) Cyclohexanol									
993. Alkaline hydrolysis of an			d) Saponification									
	a) Neutralization b) Esterification c) Polymerizati											
994. The reagent used in Gattermann Koch aldehyde synthesis is												
a) $Pb/BaSO_4$ b) $Alkaline KMnO_4$ c) $Acidic KMnO_4$ d) $CO + HCl$												
995. Which is false in case of c	[일 - 1.1] (1.1) (1.1) (2.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1)											
 a) They are polar molecu 	les											
b) They form H-bonds												
c) They are stronger than												
, , , , ,	than corresponding alcohol	S										
996. MeO $-$ CHO + x^{-6}	CH ₃ COONa_											
Med () Cho i x	H_3O^+											
<u>2</u>												
MeO-)>-сн=снсоон											
_	/											
The compound X is												
a) CH ₃ — COOH	b) BrCH ₂ – COOH	c) $(CH_3CO)_2O$	d) CHO — COOH									
997. Acetyl chloride cannot be	obtained by treating acetic	acid with:										
a) CHCl ₃	b) SOCl ₂	c) PCl ₃	d) PCl ₅									
998. Carbonyl compounds rea	ct with phenyl hydrazine to	form:										
a) Oxime	b) Phenyl hydrazone	c) Hydrazone	d) Semicarbazone									
999. Formic acid is obtained w	vhen:											
 a) Calcium acetate is heat 	ted with conc. H ₂ SO ₄											
b) Calcium formate is hea	ited with calcium acetate											
c) Glycerol is heated with	oxalic acid											
d) Acetaldehyde is oxidiz	ed with K ₂ Cr ₂ O ₇ and H ₂ SO	4										
100 Benedict's solution is not	reduced by											
0.												
a) Formaldehyde	b) Acetaldehyde	c) Glucose	d) Acetic anhydride									
100 Vinegar is	5	<u> </u>	· · · · · · · · · · · · · · · · · · ·									
1.												
а) НСНО		b) HCOOH										
c) CH ₃ CHO		d) CH ₃ COOH										
100 Which will not give aceta	mide (no heating) on react											
2.	(
a) Acetic acid	b) Acetyl chloride	c) Acetic anhydride	d) Methyl acetate									
100 Jone's reagent is:	5)	0) 1100110 111111 11110	ay rroung racounce									
3.												
a) Acidified KMnO ₄												
b) $K_2Cr_2O_7 + H_2SO_4$ or c	hromic acid + H SO											
	monne acid + 112304											
 c) Alkaline K₂Cr₂O₇ d) None of the above 												
u) None of the above												

100 4.	Acetaldehyde reacts with PC	l ₅ , to give:											
	a) Ethyl chloride b) Ethylene chloride c) Ethylidene dichloride d) Trichloroacetaldehyde Trans esterification is the process of												
100 6.	 a) Conversion of an aliphatic acid to ester b) Conversion of an aromatic acid to ester c) Conversion of one ester to another ester d) Conversion of an ester into its components namely acid and alcohol The formation of aldehyde from alkyl cyanide is related with the name 												
	a) Stephen b) Rosenmund c) Wurtz d) HVZ reaction 100 Which of the following substances will not react with PCl ₅ ?												
	a) Methyl alcohol b) Treatment of propionaldehy		c) Acetaldehyde	d) Ethane									
	a) CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₂ b) CH ₃ CH ₂ CHOHCH ₂ CH ₂ Clc) CH ₃ CH ₂ CHOHCH(CH ₃)Cd) CH ₃ CH ₂ COCH ₂ CHO 0 Fehling's solution consists of two separate alkaline solution. If one is CuSO ₄ , the other is:												
	a) NaHCO $_3$ b) α,β - unsaturated aldehyde is		c) NaKC ₄ H ₆ O ₈	d) NaKC ₂ O ₄									
0.70.00	a) HCHO $\xrightarrow{\text{KOH } (aq)}$		b) $CH_3CHO \xrightarrow{Dil.KOH} A \xrightarrow{\Delta} B$										
	c) $CCl_3 CHO \xrightarrow{KOH (aq)}$		d) CH_3 — C — CC_2H_5 $COH(aq)$										
101 1.	Which of the following organ	nic compounds answers t	to both iodoform test and F	'ehling's test?									
101 2.	a) Ethanol b) In steam distillation, the vap) Methanal our pressure of the volat	c) Ethanal tile organic compound is:	d) Propanone									
	a) Equal to atmospheric presb) Less than atmospheric prec) More than atmospheric pred) None of the above	essure ressure											
101 3.	The correct order of acid stre	ength is:											
	a) $\mathrm{CH_3COOH} > \mathrm{CH_2CICOOH}$; b) $\mathrm{CHCl_2COOH} > \mathrm{CH_2CICOOH}$ c) $\mathrm{CHCl_2COOH} > \mathrm{CH_3COOH}$ d) $\mathrm{CH_2CICOOH} > \mathrm{CH_3COOH}$	$H > CH_3COOH$ > $CH_2CICOOH$ > $CHCl_2COOH$											
101 4.	The ration of carbon, hydrog	en and oxygen in 2-meth	nyl benzoic acid is:										
101 5.	a) 4:4:2 b) Oxalic acid, malonic acid and		c) 4 : 2 : 2 tinguished by:	d) 2 : 4 : 1									

- a) Heat
- b) Acidified KMnO4
- c) Br₂ water
- d) NH₃
- 101 Ketones on reaction with NH2CONHNH2 form well defined crystalline compounds, called:

- a) Hydrazones
- b) Schiff's base
- c) Oximes
- d) Semicarbazones
- 101 In Kjeldahl's method nitrogen present is quantitatively converted to:

7.

- b) $(NH_4)_2SO_4$
- c) NO₂
- d) None of these
- 101 Propionic acid and KOH reacts to produce which one of the following?

a) Potassium propionate

b) Propyl alcohol

c) Propionaldehyde

- d) Does not react
- 101 In a set of reaction acetic acid yields a product [D]. The structure of [D] would be:

a)
$$C_6H_5CH_2$$
— C — CH_3 b) C_6H_5 — C — CH_3 c) C_6H_5 — C — $COOH$ d) C_6H_5 — C — CH_3 $COOH$

102 Benzamide on treatment with POCl3 gives

- a) Aniline
- b) Benzonitrile
- c) Chlorobenzene
- d) Benzyl amine
- 102 Anhydrous formic acid cannot be obtained from aqueous solution by fractional distillation because:

- a) It is soluble in water
- b) It forms a constant boiling mixture with water
- c) Its boiling point is very close to water
- d) There is much difference in their boiling points
- 102 In lassaigne's test when both N and S are present, blood red colour obtained is due to the formation of:

- a) Ferric ferrocyanide
- b) Ferric sulphocyanide c) Ferric cyanide
- d) None of the above
- 102 Muscone (an explosive perfume secreted by musk deer) has the structure

3.

. Its IUPAC name is:

- a) 3-methyl cyclopentadecanone
- b) Methyl cyclopentadecan-3-one
- c) 3-methyl cyclotetradecanone
- d) 3-methyl cyclohexadecan-3-one
- 102 An organic compound X with the molecular formula C₅H₁₀O yields phenyl hydrazone and gives a negative
- response to the iodoform test and Tollen's test. It prouduces n-pentane on reduction. The compound could be
 - a) Pentanal
- b) Pentanone-2
- c) Pentanone-3
- d) Amyl alcohol

102 Which compounds will not reduce Fehling's solution?

5.

- a) Methanal
- b) Ethanal
- c) Trichloroethanal
- d) Benzaldehyde

102 Which of the following compounds is oxidized to prepare methyl ethyl ketone? a) 2-propanol b) 1-butanol c) 2-butaonol d) Tert-butyl alcohol 102 An organic compound is boiled with alcoholic potash. The product is cooled and acidified with HCl. A white solid separates out. The starting compound may be a) Ethyl benzoate b) Ethyl formate c) Ethyl acetate d) Methyl acetate 102 The substance used as an adsorbent in the column chromatography is: a) Na₂0 b) Na₂SO₄ c) Al₂O₃ d) Alum 102 Saturated fatty acids are represented by which of the formula? b) $C_n H_{3n} O_2$ a) $C_n H_n O_2$ c) $C_n H_{2n+1}$ d) $C_n H_{2n} O_2$ 103 Clemmensen reduction of a ketone is carried out in the presence of which of the following? b) Glycol with KOH a) H₂ and Pt as catalyst c) Zn-Hg with HCl d) LiAlH4 103 Which of the following diacid readily gives anhydride on heating? 1. b) Maleic acid d) Terephthalic acid a) Fumaric c) Malic acid 103 The conversion 2. Can be effected by using the reagent a) H2O, H2SO4 b) 0_2 103 For detection of sulphur in an organic compound, sodium nitroprusside is added to the sodium extract. A violet colour is obtained due to the formation of: b) K₃ Fe(CN)₅ NS a) Fe(CN)₂ c) Na₄[Fe(CN)₅NOS] d) Na₄Fe(CN)₆ 103 Which of the following acids has the smallest dissociation constant? 4. a) CH₃CHFCOOH b) FCH₂CH₂COOH c) BrCH2CH2COOH d) CH3CHBrCOOH 103 In the conversion of Grignard reagent into an aldehyde, the other component used in 5. a) Ethyl formate b) Ethyl acetate c) Ethyl cyanide d) Hydrogen cyanide 103 Compound (A) C₅H₁₀O forms a phenyl hydrazone and gives negative Toolen's and iodoform tests. Compound (A) on reduction gives n-pentane. Compound (A) is: a) A primary alcohol b) An aldehyde d) A secondary alcohol 103 Which of the following statements regarding amides is not correct? a) Amides do not form salts when treated with aqueous acids b) The aqueous solutions of amides are alkaline c) Amides are very poor nucleophiles d) Amides are considerably less reactive than acid chlorides 103 Maleic and fumaric acids: a) Have identical m.p. b) Have identical solubility in water c) Form the same anhydride on heating

- d) None of the above
- 103 Sodium extract prepared by using thio urea contains which ion in the solution, mainly responsible for a
- characteristic test?
 - a) NaCN
- b) Na₂S
- d) Na2SO4

- 104
- The final product obtained in the reaction

- 104 Both HCHO and CH₃CHO gives similar reactions with all the reagents except
- 1.
- a) Schiff reagent
- b) Fehling solution
- c) Ammoniacal AgNO3
- d) Ammonia

- 104 In the reaction,

The product B is

- a) Alkyl chloride
- b) Aldehyde
- c) Carboxylic acid
- d) Ketone
- 104 The property which distinguishes formic acid from acetic acid is
- 3.
- a) Only ammonium salt of formic acid on heating gives amide
- b) When heated with alcohol /H2SO4 only acetic acid forms ester
- c) Only acetic acid forms salts with alkali
- d) Only formic acid reduces Fehling's solution
- 104 Absolute alcohol is prepared from rectified spirit by:
- a) Fractional distillation
- b) Steam distillation
- c) Azeotropic distillation
- d) Vacuum distillation
- 104 Which of the following gives oxalic acid?
- 5.
- a) Heating of acetic acid

b) Action of nitric acid glucose

c) Acidic hydrolysis of cyanogen

d) Strong heating of sodium formate

- 104 Urea on slow heating gives
- 6.
- a) NH2CONHNO2

b) NH2CONHCONH2

c) HCNO

- d) NH₂CONH₂. HNO₃
- 104 The conversion of acetophenone to acetanilide is best accomplished by using
- a) Backmann rearrangement

b) Curtius rearrangement d) Hofmann rearrangement

- c) Lossen rearrangement
- - + cyclopentanone \longrightarrow [X].
- Product is

104 An aldehyde which undergoes Cannizzaro's reaction and reduces Schiff's reagent but does not reduce

- Fehling's solution is:
 - a) CH₃CHO
- b) HCHO
- c) C₆H₅CHO
- d) Salicyladehyde

105 Which acid is used in baking powder?

- a) Oxalic acid
- b) Citric acid
- c) Lactic acid
- d) Tartaric acid

105 Which of the following statements are correct for benzoic acid?

1.

- a) Nitration gives o and p-nitrobenzoic acid
- b) Bromination gives o-bromobenzoic acid
- c) The Friedel-Craft's reaction with CH₃COCl/AlCl₃ give m-carboxyaceto-phenone
- d) The reaction with concentrated sulphonic acid gives 3-carboxybenzene sulphonic acid

105 An aromatic compound 'X' with molecular formula C₉H₁₀O gives the following chemical tests

- Forms 2, 4-DNP derivative, VIII.
 - IX. Reduces Tollen's reagent,
 - X. Undergoes Cannizaro reaction and,
 - XI. On vigorous oxidation 1, 2-benzenedicarboxylic acid is obtained.

105 Give stereochemical formula for compound (D)

HO
$$C_1$$
 C_2
 C_3
 C_2
 C_3
 C_2
 C_3
 C_4
 C_5
 C_4
 C_5
 C_5
 C_6
 C_7
 C_8
 C

a)

H
$$CH_3$$
 CH_3
 CH_3
 CH_5OH

105 General formula of carbonyl compound is:

4.

- a) $C_n H_{2n} O$
- b) $C_n H_{2n+2} O$
- c) $C_n H_{2n+1} O$
- d) $C_n H_{2n+2} O_2$

105 The product C of the reaction,

a) Methyl amine

- $CH_3CN \xrightarrow{H_2O} A \xrightarrow{NH_3} B \xrightarrow{\Delta} C$ is:
 - b) Ammonium acetate
- c) Ethyl amine
- d) Acetamide

105 Formic acid and acetic acid are distinguished by

- a) NaHCO₃
- c) Victor Meyer test
- d) Tollen's reagent

105 Which of the following types of carbonyl groups will produce oxime on reaction with?

7.

CLICK HERE

	<i>R</i> −С−ОН a)	<i>R</i> −С−Н b)	r−с−осн ₃ с) ∥ о	d) \parallel O										
	Aldehydes and ketones ca	n be reduced to hydrocarb	on by using											
8. 105 9.	a) LiAlH ₄ Industrial preparation of	b) $H_2/Pd - BaSO_4$ formic acid involves:	c) Na-Hg/HCl	d) NH ₂ - NH ₂ /C ₂ H ₅ ONa										
	 a) Reaction of CO with aqueous NaOH under pressure b) Reaction of CO₂ with aqueous NaOH under pressure c) Passing a mixture of CO and H₂ overheated copper at 473 K d) Reaction of CO with methanol at 473 K c CH₃COCH₃ can be obtained by: 													
	a) Heating acetaldehyde vb) Oxidation of propyl alcc) Oxidation of isopropyld) Reduction of propionic	ohol alcohol												
106 1.	C—CN group is called OH													
106 2.	a) Hydroxy nitrile Vinegar is a solution of ac	b) Hydroxy cyanide etic acid which is	c) Cyanohydrin	d) Hydroxy isocyanide										
106 3.	a) 15-20 $\%$ Which of the following is	b) 20-25 % the strongest acid?	c) 6-8 %	d) 2-4 %										
	a) CH ₃ COOH	ь) нсоон	c) CICH ₂ COOH	d) Cl ₂ CHCOOH										
106 4.		sequence, the correct struc $E[E] \xrightarrow{I_2} [F] + [G]$	tures of E,F and G are											
	a) $E = Ph$ CH ₃ $F =$	Ph * $\Theta \oplus$ ONa $G = CHI_3$	b) $E = Ph$ CH ₃ $F =$	Ph										
	c) $E = Ph$ * CH ₃ * F =	Ph ONa $G = {}^*_{CHI_3}$	d) $E = Ph$ * CH ₃ F =	Ph ONa $G = {}^*CH_3I$										
106 5.	Which of the following ha	s high vapour pressure at t	emperature below its melt	ing point?										
	a) Citric acid Tollen's reagent is	b) Benzoic acid	c) Salicylic acid	d) All of these										
	a) $[Ag(NH_3)_2]NO_3$ The Sulphur present in ar	b) $[Ag(NH_3)_2]Br$ n organic compound is oxid	c) Both (a) and (b) ized by fuming nitric acid i	d) None of these nto:										

a) SO₂

b) H_2SO_4

c) H₂S

-COCH₃ +CICH₂COOCH₂CH₃ $\xrightarrow{\text{NaNH}_2} X$ Identify X in the following reaction

d) S

a)
$$CH_3$$
 $CH-COOC_2H_5$

$$d) \bigcirc \begin{matrix} OH \\ -CH-C-COOC_2H_5 \\ CH_3 \end{matrix}$$

$${}^{106}_{9.} \text{ CH} \equiv \text{CH} \xrightarrow{\text{HgSO}_4} \text{A} \xrightarrow{\text{Dilute}} \text{B}$$

The compound B is

$$\mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{CHO}$$

ОН

$$\begin{array}{c} & & & & & \\ & & & & \\ \text{C) CH}_3 - \text{CH} - \text{CH}_2 - \text{C} - \text{CH}_3 \\ & & & \\ & & & \\ & & & \\ & & & \\ \text{OH} \end{array}$$

$$CH_3 - CH - CH_2 - COONa$$

OH OH 0 d) $CH_3 - C - CH_2 - C - CH_3$

107 Aldol condensation of aldehydes and ketones takes place through the formation of:

- a) Carbene
- b) Nucleophile
- c) Electrophile
- d) Free radical

107 Acetic anhydride reacts with ammonia to give:

1.

- a) Acetamide
- b) Formamide
- c) Ethyl amine
- d) Methyl amine

107 Identify the final product in the following reaction sequence

2.

$$\underbrace{\frac{1. \text{ CH}_3 \text{MgI}}{2. \text{ H}_3 \text{O}^+}}_{A} \Rightarrow B \underbrace{\frac{\text{H}_2 \text{SO}_4}{\Delta}}_{C} C \underbrace{\frac{\text{O}_3/\text{H}_2 \text{O}/\text{Z}}{\Delta}}_{C}$$

107 Petroleum refining involves:

3.

- a) Vacuum distillation
- b) Steam distillation
- c) Fractional distillation
- d) Passing over activated charcoal

107 Acetyl bromide reacts with excess of CH₃MgI followed by treatment with a saturated solution of

4. NH₄Cl gives:

- a) Acetyl iodide
- b) Acetamide
- c) 2-methyl propan-2-ol d) Acetone

107 Which of the following will not undergo Hell Volhard Zelinsky reaction?

5.

- a) CH₃COOH
- b) CH3CH2COOH
- c) 2,2-dimethyl propionic acid
- d) 2-methyl propionic acid

107 6.	Which of the following w	ill not undergo aldol conde	nsation?	
o.	a) Acetaldehyde			
	b) Propanaldehyde			
	c) Benzaldehyde			
	d) Trideuteroacetaldehyc	lo.		
107	51 52		. waight If malagular waigh	at af the compound is 100
	100	Vare present in 9:1:3.5 by	weight. If molecular weigh	it of the compound is 108,
7.	the molecular formula of		-) C II N	J) C II N
107	a) C ₂ H ₆ N ₂	b) C ₃ H ₄ N	c) C ₆ H ₈ N ₂	d) $C_9H_{12}N_3$
	which method is not used	d in the preparation of keto	ne?	
8.) D I I COO			
	a) Dehydrogenation of 2°			
	b) Heating Ca salt of an ac			
	c) Acid hydrolysis of alky			
4.05		de with Grignard reagents		
	In the Cannizzaro's reacti			
9.	$2Ph - CHO \xrightarrow{OH^-} Ph - CH_2$	OH + PhCOO-		
	the slowest step is:			
	a) The attack of OH- at the	ne carbonyl group		
	b) The transfer of hydride	e to the carbonyl group		
	c) The abstraction of pro	ton from the carboxylic acid	d	
	d) The deprotonation of I	Ph—CH ₂ OH		
108	Which one is correct for a	acidic nature of the followin	ng?	
0.	(i) PhCOOH	(ii) o-NO ₂ C ₆ H ₄ COOH		
	(iii) p -NO ₂ C ₆ H ₄ COOH	(iv) $m-NO_2C_6H_4COOH$		
	a) $(ii) > (iii) > (iv) > (i)$	b) (ii) $>$ (iv) $>$ (iii) $>$ (i)	c) (ii) $>$ (iv) $>$ (i) $>$ (iii)	d) (i) $>$ (ii) $>$ (iii) $>$ (iv)
108	The reagent which does r	not give acid chloride on tre	ating with a carboxylic acid	d is
1.				
	a) PCl ₅	b) Cl ₂	c) SOCl ₂	d) PCl ₃
108	Separation of petroleum	into its components is most	tly done by:	
2.				
	a) Chromatography			
	b) Sublimation			
	c) Distillation under redu	iced pressure		
	d) Fractional distillation			
108	The product formed in th	e aldol condensation of ace	taldehyde is	
3.				
	a) CH ₃ CH ₂ CH(OH)CHO	b) CH ₃ CH(OH)CH ₂ CHO	c) CH ₃ CH(OH)COCH ₃	d) CH ₃ CH ₂ CH ₂ CHO
108	A compound X undergoes	s reduction with LiAlH4 to y	yield Y. When vapours of Y	are passed over freshly
4.	reduced copper at 300°C,	X is formed. What is Y?		
	a) CH ₃ COCH ₃	b) CH ₃ CHO	c) CH ₃ CH ₂ OH	d) CH ₃ OCH ₃
108	Formaldehyde when trea	ted with KOH gives methan	ol and potassium formate.	The reaction is known as:
5.				
	a) Perkin's reaction			
	b) Claisen's reaction			
	c) Cannizzaro's reaction			
	d) Knoevenagel's reactio	n		
108		oth acetaldehyde and aceto	one react is	
6.	- 100 may 100	■ Control (Control (
	a) Fehling's solution	b) I ₂ /NaOH	c) Tollen's reagent	d) Carbonic acid

CLICK HERE >>>

108 The compound obtained when acetaldehyde reacts with dilute aqueous sodium hydroxide exhibits

7.

a) Geometrical isomerism

b) Optical isomerism

c) Neither optical nor geometrical isomerism

d) Both optical and geometrical isomerism

108 Consider the acidity of the carboxylic acids

8. (i) PhCOOH

(ii) $o - NO_2C_6H_4COOH$

(iii)p - NO₂C₆H₄COOH

(iv)m - NO₂C₆H₄COOH

Which of the following order is correct?

a) (i) > (ii) > (iii) > (iv)

b) (ii) > (iv) > (iii) > (i)

c) (ii) > (iv) > (i) > (iii)

d) (ii) > (iii) > (iv) > (i)

108 Which of the following orders is wrong with respect to property indicated?

9.

a) Formic acid > Acetic acid > Propionic acid (Acid strength)

b) Fluoro acetic acid > Chloro acetic acid > Bromo acetic acid (Acid strength)

c) Benzoic acid > Phenol > Cyclohexanol (Acid strength)

d) Aniline > Cyclohexylamine > Benzamide (Base strength)

109 The product P in the reaction,

0.

109
1. $A+ H_2$ pd/BaSO₄ O

109 What is the product in the reaction

2. $CH_3MgBr \xrightarrow{(i)CO_2} X?$

a) Acetaldehyde

b) Acetic acid

c) Formic acid

d) Formaldehyde

 $\frac{109}{3} \text{ Ph} - \text{C} \equiv \text{C} - \text{CH}_3 \xrightarrow{\text{Hg}^{2+}/\text{H}^+} A, A \text{ is}$

109 Organic compounds are studied separately from others, because:

4.

- a) Organic compounds do not confirm to the laws of chemical combination
- b) Organic compounds are all covalent, while inorganic compounds are electrovalent
- c) Special characteristics if carbon compounds like catenation, formation of compounds both with electropositive and electronegative elements and their tendency to show isomerism
- d) It appears a convenient way of study

109 Identify the product *Y* in the following reaction sequence

5.
$$CH_2$$
— CH_2 — COO Ca $Heat$ X Zn — Hg Y CH_2 — CH_2 — COO Ca $Heat$ Y

- a) Pentane
- b) Cyclobutane
- c) Cyclopentane
- d) Cyclopentanone
- 109 A liquid was mixed with ethanol and a drop of concentrated H_2SO_4 was added. A compound with a fruity
- 6. smell was formed. The liquid was
 - a) CH₃OH
- b) HCHO
- c) CH₃COCH₃
- d) CH₃COOH

- 109 Aldehydes are first oxidation product of:
- 7.
- a) Primary alcohols
- b) Secondary alcohols
- c) Tertiary alcohols
- d) Dihydric alcohols

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

						: ANS	WE	R K	EY:	8				
1)	b	2)	b	3)	c	4)	d :	165)	a	166)	С	167)	a	168)
5)	d	6)	c	7)	c	8)	b :	169)	c	170)	a	171)	b	172)
9)	d	10)	b	11)	a	12)	b	173)	b	174)	a	175)	a	176)
13)	c	14)	c	15)	d	16)	c	177)	b	178)	a	179)	d	180)
17)	a	18)	b	19)	a	20)	c :	181)	d	182)	d	183)	a	184)
21)	d	22)	d	23)	b	24)	c :	185)	c	186)	b	187)	a	188)
25)	c	26)	b	27)	c	28)	c :	189)	b	190)	a	191)	d	192)
29)	b	30)	b	31)	a	32)	d :	193)	C	194)	c	195)	d	196)
33)	b	34)	a	35)	d	36)	a :	197)	a	198)	c	199)	a	200)
37)	a	38)	b	39)	b	40)	b 2	201)	c	202)	c	203)	b	204)
41)	c	42)	b	43)	C	44)	c	205)	a	206)	b	207)	c	208)
45)	d	46)	a	47)	b	48)	c	209)	c	210)	b	211)	b	212)
49)	a	50)	a	51)	c	52)	d :	213)	b	214)	b	215)	a	216)
53)	d	54)	c	55)	c	56)	a Z	217)	b	218)	b	219)	c	220)
57)	c	58)	c	59)	a	60)	a 2	221)	a	222)	b	223)	d	224)
61)	a	62)	d	63)	d	64)	d :	225)	c	226)	a	227)	b	228)
65)	b	66)	c	67)	b	68)	b 2	229)	c	230)	b	231)	b	232)
69)	b	70)	c	71)	d	72)	a	233)	a	234)	b	235)	b	236)
73)	a	74)	a	75)	b	76)	c	237)	a	238)	d	239)	c	240)
77)	b	78)	b	79)	b	80)	c	241)	c	242)	b	243)	c	244)
81)	a	82)	b	83)	b	84)	b 2	245)	b	246)	c	247)	a	248)
85)	a	86)	a	87)	a	88)	b	249)	b	250)	a	251)	a	252)
89)	b	90)	b	91)	d	92)	b 2	253)	b	254)	d	255)	a	256)
93)	c	94)	a	95)	a	96)	d Z	257)	a	258)	d	259)	d	260)
97)	b	98)	c	99)	d	100)	c	261)	b	262)	b	263)	c	264)
101)	c	102)	d	103)	a	104)	d 2	265)	d	266)	a	267)	b	268)
105)	c	106)	a	107)	a	108)	c	269)	b	270)	a	271)	d	272)
109)	c	110)	b	111)	b	112)	d :	273)	c	274)	c	275)	b	276)
113)	a	114)	d	115)	a	116)	c	277)	b	278)	b	279)	C	280)
117)	d	118)	d	119)	c	120)	c	281)	a	282)	d	283)	a	284)
121)	c	122)	b	123)	b	124)	b 2	285)	b	286)	a	287)	b	288)
125)	b	126)	a	127)	b	128)	c	289)	c	290)	a	291)	d	292)
129)	a	130)	d	131)	a	132)	a Z	293)	a	294)	a	295)	a	296)
133)	d	134)	c	135)	C	136)	c	297)	b	298)	b	299)	a	300)
137)	C	138)	b	139)	b	140)	d :	301)	a	302)	b	303)	d	304)
141)	a	142)	a	143)	a	144)	c	305)	c	306)	b	307)	d	308)
145)	c	146)	d	147)	a	148)	b 3	309)	b	310)	c	311)	c	312)
149)	a	150)	b	151)	d	152)	c	313)	b	314)	b	315)	d	316)
153)	a	154)	d	155)	C	156)	c	317)	b	318)	b	319)	C	320)
157)	c	158)	C	159)	b	160)	d :	321)	b	322)	c	323)	b	324)
161)	b	162)	c	163)	a	164)	d :	325)	c	326)	c	327)	b	328)

329)	b	330)	a	331)	c	332)	[529]	b	530)	b	531)	C	532)	b
333)	c	334)	d	335)	a	336) l	533)	a	534)	b	535)	c	536)	a
337)	a	338)	d	339)	b		537)	С	538)	b	539)	d	540)	a
341)	С	342)	С	343)	d		541)		542)	b	543)	c	544)	d
345	· .	b	346)	С	347)	c	348)			546)	b	547)	a	548)	c
349	-	c	350)	b	351)	c	-	549)		550)	d	551)	a	552)	a
353		a	354)	a	355)	b		553)		554)	b	555)	d	556)	a
357	10	a	358)	d	359)	d	same 2 na	557)		558)	а	559)	b	560)	c
361		d	362)	С	363)	b	364)	1		562)	a	563)	b	564)	c
365		d	366)	b	367)	a	368)			566)	d	567)	a	568)	a
369	-	b	370)	С	371)	b	372) a			570)	a	571)	b	572)	b
373	-	b	374)	a	375)	b	376)			574)	b	575)	c	576)	c
377	50	b	378)	d	379)	b	380) a	1(578)	d	579)	d	580)	b
381	1	С	382)	b	383)	a	384)			582)	a	583)	d	584)	c
385		b	386)	b	387)	а	388) I			586)	c	587)	b	588)	a
389	-	a	390)	a	391)	С		589)		590)	b	591)	a	592)	a
393		d	394)	С	395)	b		593)		594)	a	595)	b	596)	b
397	50	c	398)	b	399)	b		597)		598)	d	599)	c	600)	c
401		c	402)	a	403)	a		601)		602)	a	603)	a	604)	d
405		c	406)	d	407)	a	408)			606)	С	607)	d	608)	c
409	. ·	c	410)	a	411)	d	4400	609)		610)	a	611)	c	612)	a
413		c	414)	b	415)	С		(613)		614)	a	615)	d	616)	a
417	50	b	418)	С	419)	c		617)		618)	d	619)	b	620)	b
421	50	d	422)	b	423)	b	424)			622)	c	623)	a	624)	b
425	301	a	426)	a	427)	b	428)			626)	d	627)	b	628)	a
429	(S) 1	a	430)	C	431)	c		629)		630)	С	631)	c	632)	c
433		b	434)	b	435)	a		633)		634)	b	635)	c	636)	d
437		c	438)	С	439)	b	440)			638)	b	639)	b	640)	c
441	53	b	442)	С	443)	c		641)		642)	b	643)	b	644)	c
445	58 .	a	446)	c	447)	a		645)		646)	b	647)	a	648)	С
449	5 0 3	b	450)	a	451)	b		649)		650 <u>)</u>	С	651)	d	652)	c
453		d	454)	C	455)	b		653)		654)	b	655)	a	656)	d
457	-	a	458)	a	459)	b		657)		658)	b	659)	c	660)	b
461	-	a	462)	c	463)	a		661)		662)	a	663)	b	664)	c
465	T)	d	466)	a	467)	b		665)		666)	a	667)	c	668)	d
469	70 1	c	470)	b	471)	b		669)		670)	b	671)	c	672)	a
473)	a	474)	b	475)	b		673)	b	674)	a	675)	c	676)	b
477)	b	478)	c	479)	d		677)		678)	a	679)	a	680)	c
481)	b	482)	a	483)	a	484)	(681)	d	682)	a	683)	b	684)	d
485)	c	486)	a	487)	a	488) a	685)	a	686)	a	687)	a	688)	b
489)	a	490)	a	491)	c	492) l	689)	С	690)	C	691)	d	692)	b
493)	c	494)	d	495)	d	496)	693)	С	694)	c	695)	b	696)	b
497)	c	498)	b	499)	a	500) a	697)	b	698)	a	699)	c	700)	c
501)	a	502)	a	503)	c	504) a	701)	d	702)	a	703)	c	704)	d
505)	a	506)	C	507)	d	508) l	705)	a	706)	b	707)	a	708)	c
509)	a	510)	C	511)	b	512) a	709)	a	710)	b	711)	b	712)	b
513)	c	514)	c	515)	b	516)	1 713)	С	714)	b	715)	c	716)	c
517)	c	518)	d	519)	a	520) a	717)	c	718)	d	719)	a	720)	b
521)	a	522)	d	523)	b	524)	721)	a	722)	c	723)	c	724)	d
525)	c	526)	b	527)	a	528) l	725)	С	726)	d	727)	b	728)	a
								of 200							

729)	d	730)	a	731)	a	732) l	9	917)	С	918)	d	919)	a	920)	b
733)	d	734)	d	735)	b	736)	: 9	921)	d	922)	C	923)	C	924)	d
737)	b	738)	a	739)	d	740)	: 9	925)	c	926)	b	927)	c	928)	d
741)	c	742)	a	743)	d	744)	1 9	929)	c	930)	b	931)	b	932)	a
745)	b	746)	c	747)	a		- 1	933)	a	934)	d	935)	b	936)	c
749)	a	750)	d	751)	d		- 1	937)	a	938)	b	939)	b	940)	d
753)	a	754)	d	755)	a			941)	b	942)	a	943)	c	944)	b
757)	b	758)	С	759)	b			945)	d	946)	b	947)	d	948)	d
761)	c	762)	b	763)	a			949)	a	950)	b	951)	a	952)	b
765)	c	766)	a	767)	c		1	953)	b	954)	С	955)	b	956)	d
769)	c	770)	b	771)	a			957)	c	958)	b	959)	b	960)	b
773)	a	774)	c	775)	a	776) d		961)	d	962)	b	963)	a	964)	c
777)	d	778)	d	779)	a	780) a		965)	a	966)	b	967)	b	968)	a
781)	a	782)	С	783)	b			969)	С	970)	a	971)	d	972)	a
785)	b	786)	a	787)	d				b	974)	d	975)	d	976)	c
789)	b	790)	a	791)	a	792) d		977)	С	978)	c	979)	c	980)	d
793)	c	794)	c	795)	b		- 1	981)	С	982)	a	983)	d	984)	b
797)	d	798)	d	799)	a			985)	d	986)	d	987)	b	988)	c
801)	c	802)	c	803)	b			989)	a	990)	b	991)	a	992)	d
805)	a	806)	b	807)	d			993)	d	994)	d	995)	c	996)	c
809)	c	810)	c	811)	a	812) c	1		a	998)	b	999)	c	1000)	
813)	b	814)	С	815)	d			1001)		1002)		1003)		1004)	
817)	b	818)	a	819)	b	- 5	- 1	1005)		1006)		1007)		1008)	
821)	c	822)	a	823)	a			1009)		1010)		1011)		1012)	
825)	b	826)	b	827)	a	Visite 14/14	- 1	1013)		1014)		1015)		1016)	
829)	c	830)	b	831)	а		1	1017)		1018)		1019)		1020)	
833)	b	834)	a	835)	c	836) c	- 1	1021)		1022)		1023)		1024)	
837)	c	838)	c	839)	a	840) c		1025)		1026)		1027)		1028)	
841)	b	842)	d	843)	d			1029)		1030)		1031)		1032)	
845)	c	846)	a	847)	d			1033)		1034)		1035)		1036)	
849)	b	850)	d	851)	c			1037)		1038)		1039)		1040)	
853)	c	500000000000000000000000000000000000000	b		d			1041)		1042)		1043)		1044)	
857)	b	858)	c	859)	d		1 1	1045)	c	1046)		1047)		1048)	
861)	d	862)	d	863)	a	- T	- 1	1049)		1050)		1051)		1052)	
865)	b	866)	b	867)	d	868) c	: 1	1053)	b	1054)		1055)		1056)	
869)	c	870)	c	871)	d	872) ł) 1	1057)	b	1058)	d	1059)	a	1060)	
873)	b	874)	a	875)	a	876) 0	: 1	1061)	c	1062)	c	1063)	d	1064)	c
877)	a	878)	c	879)	d	880) c	: 1	1065)	b	1066)		1067)		1068)	a
881)	b	882)	b	883)	c	884) (: 1	1069)	a	1070)	b	1071)	a	1072)	a
885)	a	886)	a	887)	d	888) d	i 1	1073)	C	1074)	c	1075)	c	1076)	C
889)	a	890)	d	891)	c	892) a	1 1	1077)	C	1078)		1079)	b	1080)	
893)	b	894)	b	895)	c	896) a	1 1	1081)	b	1082)	d	1083)	b	1084)	c
897)	c	898)	a	899)	a			1085)		1086)		1087)		1088)	
901)	d	902)	b	903)	d			1089)		1090)		1091)		1092)	
905)	d	906)	d	907)	b			1093)		1094)		1095)		1096)	
909)	a	910)	c	911)	c			1097)						· ·	
913)	b	914)	c	915)	a	www.vefi v	ı	20.5%							
CONFORCES.															

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

: HINTS AND SOLUTIONS :

 $CHCl_3 \xrightarrow{HOH} CH(OH)_3 \longrightarrow HCOOH$

2

O O CH₃—C-CH₂—C-OC₂H₅ NaOH + I₂ no reaction keto-ester (A)
$$\downarrow$$
 KOH/HOH

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

The keto-ester (A) does not give haloform reaction inspite of the presence of CH₃CO - group in it. The reason is the presence of active methylene group (ie, -CH2 -), which prevents the conversion of $CH_3CO - to CX_3CO -$

3 (c)

> Formaldehyde reacts with NH3 to form urotropine which is used as medicine to cure urinary infections.

 $4NH_3 \rightarrow$ $(CH_2)_6N_4$ hexamethylene Formaldehyde ammonia tetramine urotropine

Aldehydes and ketones having α-hydorgen atom undergo aldol condensation in presence of dilute

 $CH_3CHO \xrightarrow{[O]} CH_3COOH$

Acetic acid reacts with PCl₅ to form acetyl chloride.

 $CH_3COOH + PCl_5 \rightarrow CH_3COCl + POCl_3 + HCl$ acetic acid acetyl chloride

(d)

C₆H₅COOH is solid, less soluble in water and burn with smoky flame.

11

 $CH_2Cl_2 \xrightarrow{HOH} HCHO$

12 **(b)**

When aromatic carboxylic acids are subjected to Birch reduction (ie, Na or K in NH3 and an alcohol), 1, 4-additional of hydrogen takes place and 1, 4-cyclohexadiene carboxylic acids are produced

13 (c)

Picric acid is 2,4,6-trinitrophenol.

14 (c)

Herbicides are the substances that kills plants or inhibit their growth. Selective herbicides affect only particular plant types, making it possible to attack weeds growing among cultivated plants.

15 (d)

Carbonyl compounds are reduced to corresponding alkanes with (Zn+ conc.HCl). It is called Clemmensen reduction.

 $\mathsf{CH}_3\mathsf{CH}_2.\,\mathsf{C}-\mathsf{CH}_3\xrightarrow{\mathsf{Zn}(\mathsf{Hg})+\mathsf{HCl}}\mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3$

Aluminium tertiary butoxide is an oxidising agent used for the oxidation of secondary alcohols into ketones.

$$\begin{array}{c} \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH}_3 \\ | \\ \operatorname{OH} \\ \operatorname{3-pentanol} \end{array}$$

$$\xrightarrow{\text{Al[OCMe}_3]_3/\text{acetone}} \text{CH}_3 - \text{CH}_2 - \text{C} - \text{CH}_2 - \text{CH}_3$$

$$||$$

$$0$$

3-pentanone

18 **(b)**

The silver salt of fatty acid on refluxing with an alkyl halide, give an ester.

$$RCOOAg + R'Cl \xrightarrow{\Delta} RCOOR' + AgCl$$
ester

19 (a)

$$CH_3COCH_3 \xrightarrow{SeO_2} CH_3CO \cdot CHO + Se + H_2O$$

20 (c)

1, 2 diketone undergoes rearrangement to α -hydroxy carboxylic acid in presence of base. This reaction is known as benzilic acid rearrangement

23 (b)

In the given compound, carbonyl group is reduced to – OH group by ${\rm NaBH_4}$ and it does not affect double bond. The another is hydroboration-oxidation reaction, in which one water molecule is added to double bond

$$\begin{array}{c|c} & \text{NaBH}_4 \\ & \text{H}_2\text{C} \\ \hline \end{array} \begin{array}{c} & \text{O} \\ & \text{OH}^- \\ & \text{HO} \\ & \text{H}_2\text{C} \\ \hline \end{array} \begin{array}{c} & \text{OH}^- \\ & \text{HO} \\ & \text{HO} \\ & \text{HO} \\ \end{array}$$

26 (b)

$$CH_3CHO \xrightarrow{Na/C_2H_5OH} CH_3CH_2OH$$

28 (c)

 Acidity decreases with increase in number of carbon atoms in carboxylic acid.

- Solubility of carboxylic acid decrease with increase in number of carbon atoms.
 Higher acids are insoluble in H₂O.
- Boiling points of acids are higher than corresponding alcohols due to greater extent of hydrogen bonding.

∴ (c) is correct answer.

29 (b)

Only suitable reagent is chromic anhydride in glacial acetic acid. Other will also effect (C=C) bond.

30 (b)

In the Rosenmund's reaction the acid chlorides are converted to corresponding aldehydes by catalytic reaction. This reaction is carried in the presence of palladium deposited over barium, sulphate.

$$\begin{array}{c} O \\ || \\ CH_3-C-Cl+H_2 \xrightarrow{\ \ Pd,BaSO_4 \ \ } CH_3CHO+HCl \\ Acetyl \ chloride & acetaldehyde \end{array}$$

31 **(a)**

In Claisen condensation aromatic aldehydes having no α —hydrogen atom react with aldehyde, ketones or esters having α —hydrogen atom in presence of dilute alkali to form

 α, β –unsaturated carbonyl compound. e.g.,

$$C_6H_5CHO + H_2C-COO$$

$$CH_3$$

$$HCC_6H_6 = C-OOC$$

$$A \mid \beta \text{ -unsaturated carbonyl compound}$$

Claisen condensation is not given by

As it does not contain α -hydrogen atom.

32 (d)

Methyl salicylate an ester has smell of oil of winter green and used as medicine in iodex; the pain reliever of strains in muscles.

33 **(b)**

Rosenmund's reaction involves reduction of acid chlorides to aldehydes by the action of $\rm H_2$ in presence of Pd/BaSO₄. BaSO₄ acts as poison for Pd and prevents further reduction of aldehydes to alcohol.

34 (a)

After treatment with D_2O , the H^+ ion of - OH group is replaced by D^+ ion, because of being more reactive than deuterium

more reactive than deuterium
$$CH_3 - C = CH_2 \xrightarrow{D_2O} CH_3 - C = CH_2$$

$$| \qquad \qquad |$$

$$OH \qquad OD$$

35 (d)

$$\mathsf{CH}_3\mathsf{COOH} \xrightarrow{\mathsf{NH}_3} \mathsf{CH}_3\mathsf{COONH}_4 \xrightarrow[-\mathsf{H}_2\mathsf{O}]{\Delta} \mathsf{CH}_3\mathsf{CONH}_2$$

acetic acid $\,$ ammonium acetate $\,$ acetamide $\,$ The isomers of CH_3CONH_2 is

NH₂CH₂CHO

5.
$$CH_3 - CH = NOH$$

6.
$$H - CONH - CH_3$$

38 (b)

$$CH_3COOCH_3 + C_2H_5OH \rightarrow CH_3COOC_2H_5 + CH_3OH$$

40 **(b)**

Cinnamaldehyde is prepared by the Claisen reaction between benzaldehyde and acetaldehyde

$$C_6H_5CHO + CH_3CHO \xrightarrow{\text{NaOH}} C_6H_5OH$$

= CHCHO + H₂O

cinnamaldehyde

41 (c)

2CH₃COOH
$$\stackrel{P_2O_5}{\longrightarrow}$$
 (CH₃CO)₂O + H₂O P₂O₅ acts as dehydrating agent.

44 (c)

Carbonyl compound +

HCN →cyanohydrin $\xrightarrow{H_2O/H^+}$ hydroxy acid Latic acid is

: Cyanohydrin of acetaldehyde forms lactic acid.

46 (a)

$$\begin{array}{c}
R \\
H
\end{array}
C=0 \xrightarrow{HCN}
\begin{array}{c}
R \\
C-OH \\
CN
\end{array}$$

$$\xrightarrow{\text{HOH}} \xrightarrow{R} C - OH$$

Carbon is asymmetric.

48 **(c**)

Carboxylic acids are prepared by reaction of Grignard reagent with ${\rm CO}_2$.

- : Formic acid (HCOOH)has only one carbon atom
- \div Formic acid cannot be prepared from Grignard reagent.

$$\begin{matrix} \text{O} \\ || \\ R\text{Mg}X + \text{CO}_2 \rightarrow R - \text{C} - \text{OMg}X \xrightarrow{\text{HOH}} R\text{COOH} \\ \text{Grignard reagent} \end{matrix}$$

51 (c)

Lactic acid on heating with conc. H_2SO_4 to give acrylic acid

$$CH_3$$
- C - $COOH$ Δ
 CH_2 = CH - $COOH$
 CH_2 SO₄ CH_2 = CH - $COOH$
 CH_3
 CH_4 = CH - $COOH$
 CH_4
 CH_5
 CH_4
 CH_5
 CH_4
 CH_5
 CH_4
 CH_5
 CH_5
 CH_6
 CH_6

52 **(d)**

When urea is heated it gives the biurate which give violet colour with CuSO₄ and NaOH.

56 (a)

An immiscible solvent is added to the solution. Some of the solute passes in this solvent maintaining Nernst distribution law $K=\frac{c_1}{c_2}$, where C_1 and C_2 are concentration of solute in two phases.

57 **(c)**

Electron withdrawing group (-Ieffect) stabilizes the anion, and thus increases acidic nature. Thus (c), (d)> (a), (b) acidic

Farther the electron withdrawing group from the -COOH group, its effect in increasing acid strength decreases thus (c) with Cl at α —position is stronger than (d) with Cl at γ —position.

58 (c)

When, benzene is heated with acetyl chloride, in presence of anhydrous AlCl₃, electrophilic substitution takes place and acetophenone is obtained. The reaction is known as Friedel-Craft acylation.

59 (a) $: 6HCHO + 4NH_3 \rightarrow (CH_2)_6N_4 + 6H_2O$ hexamethylene tetramine

60 (a)

4-methyl benzene sulphonic acid is stronger than acetic acid thus, it will release acetic acid from sodium acetate.

61 (a) $RCOOH \xrightarrow{PCl_5} RCOCI.$

63 (d)

Clemmensen reduction can be used to convert acetophenone into ethyl benzene as it reduce >C=0 group into > CH_2

64 (d)

Carboxylic acids reacts with weaker bases such as bicarbonates producing CO_2 . The CO_2 evolved comes from NaHCO₃, not from carboxylic group as shown below:

$$CH_3CH_2$$
 CH_3CH_2
 CH_3CH_2

67 **(b)**

Iso-propyl magnesium bromide reduces di-*iso*-propyl ketone to secondary alcohol. However, only – H⁺ ion adds to ketone in spite of bulky alkyl group due to steric hinderance

six membered cyclic transition state

$$\begin{array}{c} \text{CH}_2 = \text{CH} - \text{CH}_3 + \\ & \text{(CH}_3)_2 \text{CH} \\ & \text{(CH}_3)_2 \text{CH} \\ & \text{HOH} \\ & \text{OH} \\ & \text{H}_3 \text{C} \\ & \text{H}_3 \text{C} \\ & \text{CH} - \text{CH} - \text{CH} \\ & \text{CH}_3 \end{array}$$

68 **(b)**

In (a) *t*-alcohol, in (c) initially *s*-alcohol converting to ether. In (d) *p*-alcohol.

69 (b)

Carbonyl carbon becomes more reactive towards nucleophilic addition depending upon the magnitude of the positive charge on the carbonyl carbon atom. The introduction of negative inductive effect showing group (-/effect) increases the reactivity while introduction of alkyl group (+/effect) decreases the reactivity. So, large alkyl group decreases the reactivity of > C=0.

71 (d)

Unsaturated ketones may be converted to unsaturated acids by sodium hypohalite, *i. e.*, NaOCl, NaOI, etc.

72 (a)

The b.p. are $CH_3CONH_2 > (CH_3CO)_2O$ > $CH_3COOH > CH_3COCl$ 222°C 139°C 116°C

52°C

73 (a)

Cl⁻ is the best leaving group being the weakest nucleophile out of NH₂, Cl⁻, O⁻

$$0$$
 \parallel
 $-C_2H_5$ and $0^ -C_0$ $-C_0$

74 (a)

Former reacts with aq. NaHCO₃.

75 (b

CO₂ adds to Grignard's reagent to yield acids.

$$CO_2 \xrightarrow{CH_3MgI} CH_3COOMgI \xrightarrow{H.OH} CH_3COOH + Mg(OH)I$$

78 **(b)**

All methyl ketones give iodoform test.

80 (c)

This is an example of Cannizaro reaction

$$\begin{array}{c} \bullet \\ \bullet \\ \text{H}_2\text{SO}_4 \end{array} \begin{array}{c} \bullet \\ \text{CH}_2\text{OH} \end{array}$$

82 (b)

Grignard reagent = CH_3MgX Clemmensen reduction=Zn - Hg/Conc HClRosenmund reduction= $H_2/Pd - BaSO_4$ Wolff-Kishner reduction= $N_2H_4/KOH/CH_2OH$

CH₂OH

84 **(b)**

Decarboxylation of malonic acid give acetic acid and CO_2

85 (a)

Amides, on treating with HNO₂, give acids. $CH_3CONH_2 \xrightarrow{NaNO_2/HCl} CH_3COOH + N_2 + H_2O$ acetic acid

87 (a)

Acetyl nitrate is formed, when acetic anhydride reacts with nitrogen pentoxide.

$$\begin{array}{c} \text{CH}_3\text{CO} \\ \text{CH}_3\text{CO} \end{array} \rightarrow \begin{array}{c} \text{O} \\ \text{nitrogen} \\ \text{acetic anhydride} \end{array} \rightarrow \begin{array}{c} \text{2CH}_3\text{CONO}_2 \\ \text{acetyl nitrate} \end{array}$$

88 **(b)**

Fenton's reagent is $FeSO_4 + H_2O_2$.

89 (b)

In Clemmensen's reduction Zn — Hg/conc. HCl is used

$$C=0 + 4H\frac{Zn - Hg + conc. HCl}{CH_2 + H_2O}$$

This method is used to convert carbonyl compound into alkane.

91 (d)

93 **(c)**Bezaldehyde does not yield a simple addition product with ammonia, but forms a complex product, hydrobenzamide (90%)

$$C_6H_5CHO \xrightarrow{NH_3} C_6H_5 - \overset{OH}{C} - NH_2$$

$$-\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_5 - \text{CH} = \text{NH}$$

$$C_6H_5$$
-CH=N H + HN $=$ CH-C $_6H_5$ NH_3

$$C_6H_5$$
— CH — N
 CH — C_6H_5
 C_6H_5 — CH — N
 CH — C_6H_5

94 (a)

The order of the acidic characters of acid derivative or their ease of hydrolysis with alkali is given below:

$$\begin{aligned} \mathsf{CH_3COCl} > \mathsf{CH_3CO} - \mathsf{O} - \mathsf{COCH_3} > C\mathsf{H_3COOC_2H_5} \\ > C\mathsf{H_3CONH_2} \end{aligned}$$

95 (a)

It is adipic acid.

97 **(b)**

$$\mathsf{CH}_2 {=} \mathsf{CHCHO} \xrightarrow{\mathsf{Reduction}} \mathsf{CH}_3 \mathsf{CH}_2 \mathsf{CH}_2 \mathsf{OH}$$

99 (d)

Stearic acid ($C_{17}H_{35}COOH$), palmitic acid ($C_{15}H_{31}COOH$) and oleic acid ($C_{17}H_{33}COOH$; an unsaturated acid) are fatty acids.

102 (d)

The given reaction is an example of Diels-Alder reaction, which is a cycloaddition

103 (a)

On complete oxidation the obtained compound shows increment in molecular weight of only 16. It means only one oxygen atom is added here. This condition is fulfilled by only aldehyde which on oxidation gives acid.

$$RCHO \xrightarrow{[O]} RCOOH$$

: Original compound must be

 $CH_3CHO \xrightarrow{[O]} CH_3COOH$ mol. wt. 44 mol.wt.60

104 (d)

Former reacts with aq. HCl.

106 (a)

% ratio of C: H::6:1 and C:0::3:4

: % ratio of C: H: 0:: 6:1:8

$$\% C = \frac{6}{15} \times 100 = 40$$

$$\% H = \frac{1}{15} \times 100 = 6.66$$

$$\% O = \frac{8}{15} \times 100 = 53.3$$

$$\% A = \frac{40}{12} = 3.33$$

$$\frac{6.66}{1} = 6.66$$

$$\frac{53.3}{16} = 3.33$$

 \therefore Simplest ratio of C: H: O::1:2:1, i.e., CH₂O

107 (a)

$$2KCNO + (NH_4)_2SO_4 \rightarrow 2NH_4CNO + K_2SO_4$$

 $NH_4CNO \xrightarrow{\Delta} NH_2CONH_2$
urea

108 (c)

2-pentanone and 3-pentanone can be distinguished by iodoform test. CH₃COCH₂CH₂CH₃(2-pentanone) gives positive iodoform test while CH3CH2COCH2CH3 (3pentanone) doesn't give iodoform test.

110 (b)

A 40% solution of formaldehyde in water, called formalin, is used for the preservation of biological and anatomical species

111 (b)

Aldol condensation is given by acetaldehyde due to the presence of α -hydrogen atom.

$$CH_3CHO + H. CH_2CHO \xrightarrow{Dil.NaOH} CH_3 - CH - CH_2$$

OH aldol

112 (d)

These reactions lead to replacement of oxygen atom of carbonyl group to form hydrazones and oximes.

114 (d)

C =
$$\frac{38.7}{12}$$
 = 3.22 = $\frac{3.22}{3.22}$ = 1
H = $\frac{9.67}{1}$ = 9.67 = $\frac{9.67}{3.22}$ = 3
O = $\frac{51.63}{16}$ = 3.22 = $\frac{3.22}{3.22}$ = 1
 \therefore Empirical formula is CH₃O

115 (a)

$$CH_3COC1 \frac{Pd/BaSO_4}{H_2} > CH_3CHO + HCI$$
(A)

CH₃COCl is the isomer of CH₂ClCHO · CH₃CHO is the isomer of oxirane ie

117 (d)

$$(CH_2)_6N_4 + 3HNO_3 \longrightarrow N$$

$$urotropine$$

$$O_2N$$

$$CH_2$$

$$+ 3HCHO + NH_3$$

$$N$$

$$N$$

$$N$$

$$RDX$$

: Nitration of urotropine gives powerful explosive

118 (d)

$$RCOOH + N_3H \rightarrow RNH_2 + CO_2 + N_2$$

The solution produces CuO in it.

122 **(b)**

Stephen's reduction Aldehyde can be prepared from alkyl cyanides. e.g.,

$$CH_3 - C \equiv N + 2[H] \xrightarrow{SnCl_2/HCl} CH_3 - CH$$

$$= NH. HCl$$

$$\downarrow H_2O/H^+$$

 $CH_3CHO + NH_4CI$ acetaldehyde

123 (b)

Aldehydes, which have no α -hydrogen atom, undergo Cannizaro reaction is presence of conc. NaOH and yield an alcohol and an acid salt. (Disproportionation).

$$2C_6H_5CHO \xrightarrow{NaOH} C_6H_5CH_2OH + C_6H_5COONa$$

benzaldehyde benzyl alcohol

125 (b)

$$RCOOR' + NH_3 \rightarrow RCONH_2 + R'OH$$

$$CH_3COCl + NaCOOCCH_3 \rightarrow (CH_3CO)_2O + NaCl$$

127 (b)

$$C_2H_6 + \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O$$

128 (c)

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{COOH} \xrightarrow{\text{NH}_3} \text{CH}_3\text{CH}_2\text{CONH}_2 \\ \text{Propionic acid} & \text{propionamide} \\ \hline & (X) \\ \hline \xrightarrow{\text{Br}_2+\text{KOH}} \text{CH}_3\text{CH}_2\text{NH}_2 \xrightarrow{\text{HNO}_2} \text{CH}_3\text{CH}_2\text{OH} \\ & \text{Ethyl amine} & \text{ethyl alcohol} \end{array}$$

(Y)

129 (a)

(Z)

The acidic strength of dicarboxylic acids decreases as the number of methyl groups increases, because of their +*I* effect

130 (d)

Oppenauer oxidation;

=

Meerwein – Ponndorf – Verley reaction. $R_2\text{CO} + [(\text{CH}_3)_2\text{CHO}]_3\text{Al} \rightarrow \text{CH}_3\text{COCH}_3 + [R_2\text{CHO}]_3\text{Al}$

131 (a)

Addition according to Markownikoff's rule.

132 (a)

In Cannizaro reaction when formaldehyde reacts with other aldehydes lacking $\alpha\text{-hydrogen,}$ it is always oxidized and other aldehyde is reduced

$$\begin{aligned} \text{HCHO} + \text{C}_6\text{H}_5\text{CHO} & \xrightarrow{\text{NaOH}} \text{HCOO}^-\text{Na}^+ \\ & + \text{C}_6\text{H}_5\text{CH}_2\text{OH} \end{aligned}$$

134 (c)

It is an example of Cannizaro's reaction.

135 (c)

$$\mathsf{Br}_2\mathsf{HCCBr}_2\mathsf{COOH} \xrightarrow{\mathsf{Sodalime}} \mathsf{CHBr}_2\mathsf{CHBr}_2$$

136 (c)

All aldehydes reduce Fehling's solution to give red ppt. of Cu₂O.

138 (b)

CH3CH2CH2COOCH3; has banana odour.

139 (b)

This is internal Cannizzaro's reaction.

143 (a)

$$(i) O_{3}$$

$$(ii) Zn, H_{2}O$$

$$4 \underbrace{\begin{array}{c} 5 & 0 & 7 \\ 6 & 0 & 9 \\ \hline \end{array}}_{2} \underbrace{\begin{array}{c} (i) \text{NaOH } (aq) \\ (ii) \text{ Heat} \end{array}}_{2} \underbrace{\begin{array}{c} 0 & 0 \\ 0 & 0 \\ \hline \end{array}}_{2}$$

155 (c)

$$C_4H_9OCl \xrightarrow{NH_3} C_4H_9ONH_2 \xrightarrow{Br_2^+} CH_3CH_2CH_2NH_2$$

Thus, C_4H_9OCl should be $CH_3CH_2CH_2COCl$.

For aldol condensation C-5 and C-7 can attack to C-1 similarly C-2 and C-10 can attack to C-6 but all give same product.

144 (c)

$$(CH_3CH_2COO)_2Ca \rightarrow CH_3CH_2COCH_2CH_3 + CaCO_3$$

146 (d)

Aldehyde containing no $\alpha\textsc{-H-atom}$ on reaction with 50% NaOH or KOH, undergo disproportionation to give an alcohol and Na or K salt of an acid. This reaction is called Cannizaro reaction. Acetaldehyde does not show Cannizaro reaction due to presence of $\alpha\textsc{-hydrogen}$ atom

147 (a)

$$CH_3CH_2CH_2OH \xrightarrow{K_2Cr_2O_7} CH_3CH_2CHO$$

7.

(B)

propanol

propanal

$$\xrightarrow{\text{H}_2\text{NCONHNH}_2} \text{CH}_3\text{CH}_2\text{CH} = \text{NNHCONH}_2$$

(C)

148 **(b)**

$$CH_3CN \xrightarrow{HOH} CH_3COOH$$

152 (c)

40% aqueous solution of formaldehyde (methanal) is called as formalin.

Note Formalin used as disinfectant and preservative for biological specimens.

153 (a)

 ${
m LiAlH_4}$ is a strong reducing agent, which reduces carboxylic acids to corresponding primary alcohols as well as alkyl halide to alkenes, but donot reduce double bond

$$\mathsf{BrCH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{COOH} \xrightarrow{\mathsf{LiAIH}_4} \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{OH}$$

154 (d)

The strength of carboxylic acid depends upon the nature of the electron withdrawing halogen atom. Greater the electron withdrawing influence of the halogen atom stronger will be the acid. The electron withdrawing effect of the halogen decreases as

Hence, $CH_2(I)$. COOH is the weakest acid among these.

 $CH_3CH_2CHOHCH_3 \xrightarrow{[O]} CH_3CH_2COCH_3$

160 (d)

$$R$$
 — CHO + 2CuO \rightarrow R COOH + Cu₂O

167 (a)

Acetic acid is CH₃COOH or C₂H₄O₂. Thus, its empir

170 (a)

The Arndt-Eistert synthesis is used to convert carboxylic acid to the higher acid homologue $RCOOH \xrightarrow{\text{(i) SOCl}_2} RCH_2COOH$

171 (b)

Less +ve inductive effect on carbonyl group and thus more +ve charge on C+ to give nucleophilic

$$H_3C \longrightarrow H_3C \longrightarrow C^+ - O^-$$

172 (a)

% of C =
$$\frac{12 \times 0.147}{44 \times 0.2} \times 100 = 20$$

% of H = $\frac{2 \times 0.12}{18 \times 0.2} \times 100 = 6.66$
 \therefore % of O = $100 - 20 - 6.66 = 73.34$

174 (a)

Resonance in carboxylate ions give rise to identical bond lengths.

175 (a)

2-hydroxypropane or secondary alcohol is oxidised into propanone (corresponding carbonyl compound because in 2-hydroxypropane, secondary alcoholic group is present and it is oxidised into ketone).

$$\begin{array}{ccc} \text{CH}_3 - \text{CH} - \text{CH} & \stackrel{[O]}{\longrightarrow} \text{CH}_3 - \text{C} - \text{CH}_3 \\ & | & || \\ & \text{OH} & \text{O} \\ & \text{2-hydroxyprone} & \text{propanone} \end{array}$$

(s-alcohol)

176 (c)

Only aldehydes and ketones react with 2, 4dinitrophenyl hydrazine to give orange coloured ppt. This reaction is used as test for carbonyl group. Alcohols does not give this reaction.

(ketone)

Choice (a), (b) and (d) are carbonyl compounds and they react with 2,4-dnitreophenyl hydrazine CH₃OH[choice(c)] doesn't have carbonyl group. : CH3OH[choice (c)] doesn't react with 2,4dinitrophenyl hydrazine.

177 (b)

Carboxylic acids acids react with Grignard's reagent to give alkanes.

$$CH_3COOH + CH_3MgX \rightarrow CH_3COOMgX + CH_4$$

methane

179 (d)

2-pentanone give positive iodoform test.

180 (b)

Ethyl acetate is obtained by acetaldehyde by using aluminium ethoxide. It is a one step process and called Tischenko's reaction

$$\begin{array}{c} \text{2CH}_3\text{CHO} \\ \text{ethanal} \end{array} \\ \overline{\text{Aluminium ethoxide}} \begin{array}{c} \text{CH}_3\text{COOC}_2\text{H}_5 \\ \text{ethyl acetate} \end{array}$$

182 (d)

Acids are soluble in bases.

183 (a)

Eq. of silver salt = Eq. of Ag
$$\frac{0.759}{E} = \frac{0.463}{108}$$

$$\therefore$$
 Eq. wt. of acid = 177 - 108 +1 = 70

184 (b)

Acetaldehyde on heating with Tollen's reagent give silver mirror test while acetone is not oxidised by Tollen's reagent

(Ketones oxidise only under drastic condition).

185 (c)

Hydroxamic acid test is used to detect presence of

In hydroxamic acid test a few crystals or a few drops of the substance is dissolved in 1 mL of 95% ethanol+1 mL of 1 MHCl. Then, a drop of 5% FeCl₃ is added.

Formation of characteristic colour shows the presence of acyl or ester group.

186 (b)

LiAlH₄ reduces - COOH group to - CH₂OH group without affecting C=C bond.

187 (a)

$$\begin{array}{c} \text{Benzaldehyde} \xrightarrow{\text{Perkin reaction}} 3 - \text{phenyl prop} \\ -2\text{ene} - 1 - \text{oic acid.} \\ \text{C}_6\text{H}_5\text{CHO} + (\text{CH}_3\text{CO})_2\text{O} \xrightarrow{\text{CH}_3\text{COONa}} \text{C}_6\text{H}_5\text{CH} \\ = \text{CHCOOH} + \text{CH}_3\text{COOH} \end{array}$$

Cinnamic

acid

189 (b)

Methyl salicylate is the main component of oil of winter green. Its structure is

193 (c)

α-hydroxy acids form lactides, γ and δ-hydroxy acids form lactones, (cyclic compounds). While β-hydroxy acids form α, β-unsaturated acid on heating

$$\begin{array}{c} \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH-CH}_2\text{-C-OH} \xrightarrow{\Delta} \\ \text{OH} \end{array}$$

CH₃-CH₂CH₂CH=CH-C-OH

$$\alpha, \beta$$
 -unsaturated acid

194 (c)

This is Knovengeal reaction.

$$CH_3$$
 $C=0$ CH_3 $C=0$ CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH

195 (d)

For the conversion of primary alcohol into aldehyde with the same number of carbon, the most suitable reagent is pyridinium chlorochromate (PCC).

$$RCH_2OH \xrightarrow{PCC} RCHO$$

Note PCC is the mixture of pyridine, ${\rm CrO_3}$ and HCl in 1:1:1 ratio.

196 (c)

In 2, 4, 6-tri-nitrobenzoic acid, the decarboxylation takes place most easily, because of -I effect of nitro group, whereas in the dicarboxylic acid with one carbon atom having two carboxylic group it is also easier to remove CO_2 . Hence, the order of ease of decarboxylation

$$O_2N$$
 O_2N O_2N

$$>$$
 CH $_2$ =CH-CH $_2$ COOH $>$ CH $_3$ COOH

199 (a)

As the number and the size of the alkyl groups increases, reactivity decreases. Hence, the reactivity order is

$$\begin{array}{c}
H \\
C = O > H \\
C = O > H_3C
\end{array}$$
 $\begin{array}{c}
C = O \\
C = O
\end{array}$
 $\begin{array}{c}
(CH_3)_3C \\
C = O
\end{array}$
 $\begin{array}{c}
(CH_3)_3C \\
C = O
\end{array}$

200 (c)

Keto group is protected by ethylene glycol being reduced and ester radical of the compound is reduced to tertiary alcohol by reaction with Grignard reagent and subsequent hydrolysis

201 (c)

In Hell-Volhard Zelinsky reaction, when acid reacts with Br_2 or Cl_2 in presence of red phosphorus α -hydrogen atom of the acid is replaced by halogen atom. HCOOH does not give HVZ reaction due to absence of α -hydrogen atom

202 (c)

COOH
$$\frac{\text{Ba(OH)}_2}{300^{\circ}\text{C}}$$
 + CO_2

Phthalic acid

In presence of $Ba(OH)_2$ when heated phthalic acid undergoes decarboxylation.

204 (a)

Wolff-Kishner's reaction involves reduction of carbonyl compound into alkane using alkaline hydrazine as reducing agent.

205 (a)

Benzoic acid, *o*-phthalic acid and acetophenone inspite of having double bonds, does not give unsaturation test (addition with Br₂/CCl₄) as they are aromatic compounds and are quite stable due to large resonance energy. Cinnamic acid, on the other hand has a double bond outside the benzene ring (in the side chain) hence it gives unsaturation test.

206 **(b)**

$$\begin{array}{c} \text{CHO} \\ \text{CHO} \\ \text{CHO} \\ \end{array}$$

$$\begin{array}{c} \text{COONa} \\ \text{CH}_2\text{OH} \\ \text{COOH} \\ \text{CH}_2\text{OH} \\ \end{array}$$

This reaction is an example of intramolecular Cannizaro's reaction.

207 (c)

$$C=O+HCN \rightarrow C$$
 CN
 $C=O+NaHSO_3 \rightarrow C$
 SO_3Na

Note: only methyl ketones react with NaHSO₃.

208 (d)

Benzaldehyde lacks α –hydrogen atom, hence undergo Cannizaro reaction in which it disproportionate into benzyl alcohol and sodium

 $2\mathsf{C}_{6}\mathsf{H}_{5}\mathsf{CHO} \xrightarrow{\mathsf{Conc.NaOH}} \mathsf{C}_{6}\mathsf{H}_{5}.\,\mathsf{CH}_{2}\mathsf{OH} + \mathsf{C}_{6}\mathsf{H}_{5}\mathsf{COOK}$

209 (c)

Although it has α-H-atom but undergoes Cannizzaro's reaction; an exception.

211 (b)

Hydrazines react with alkanones to give an addition-elimination reaction and hydrazones are

$$C=0 + H_2N.NHC_6H_5$$
 $C=N.NHC_6H_5 + H_2O$ phenyl hydrazine phenyl hydrazone

C5H12O must be a tertiary alcohol as it gives alkene on treatment with Cu. Thus C_4H_8O is a ketone.

$$HCOOH \xrightarrow{H_2SO_4} CO + H_2O$$

214 (b)

$$CCl_3CHO \xrightarrow{H_2O} CCl_3CH(OH)_2$$
Chloral hydrate

216 (c)

In the reaction of carboxylic acid with diazomethane, methyl esters are produced with liberation of N2

$$\leftarrow$$
 COOH + CH₂N₂ \longrightarrow \leftarrow COOCH₃ cooCH₃

217 (b)

$$(CH_3)_2CHOH \xrightarrow{[O]} (CH_3)_2CO$$

218 (b)

Aromatic aldehyde i.e., C₆H₅CHO are not able to reduce Fehling's solution but it gives Cannizaro's reaction with alkali.

220 (b)

$$RCOCl + NH_3 \rightarrow R - CONH_2$$

Acid chloride amide

223 (d)

$$3CH_3CHO \xrightarrow{H_2SO_4} (CH_3CHO)_3$$
Paraldehyde

224 (d)

Crystallization of conc. solution separates out salts.

225 (c)

By distillation of red ant, formic acid is obtained.

226 (a)

RCOOH and HCOOR are functional isomers having —OH (acid) and—C—OR (ester) group.

228 (d)

When amide is heated with a mixture of Br₂ in the presence of NaOH or KOH amine is formed which has one carbon atom less than original amide. This is called Hofmann's degradation reaction. Hexanamide+Br₂ + 4KOH → Pentanamine + $K_2CO_3 + 2KBr + 2H_2O$

229 (c)

Semicarbazide is NH2NHCONH2.

230 (b)

Maleic acid contains intramolecular hydrogen bonding while Fumaric acid contains iuntermolecular bonding. Thus, maleic acid forms more stable maleate ion after the removal ofH+. Hence maleric acid is stronger acid than Fumaric acid

233 (a)

$$RCOOK(aq.) \xrightarrow{Electrolysis} R - R + CO_2 + KOH + H_2$$

235 **(b)**

This reaction is called Rosenmund's reaction.

238 (d)

The reaction is called crossed Cannizzaro's reaction:

 $HCHO + C_6H_5CHO \xrightarrow{NaOH} HCOONa + C_6H_5CH_2OH$

239 (c)

$$6HCHO + 4NH_3 \rightarrow (CH_2)_6N_4 + 6H_2O$$

 $CH_3CONH_2 + HOH \rightarrow CH_3COOH + NH_3$

Acidic order is: CH₃COOH > CH₃CH₂COOH > $C_6H_5OH > C_2H_5OH$.

244 (a)

Acetone (CH₃COCH₃) undergoes condensation reaction in presence of HCl to produce mesityl

$$2CH_3COCH_3 \xrightarrow{HCl} (CH_3)_2 - C = CHCOCH_3$$

4-methyl pent-3en-2one

or mesityl oxide

247 (a)

6HCHO $\xrightarrow{\text{Ca}(\text{OH})_2}$ C₆H₁₂O₆; formose or α-acrose; 259 (d) an isomer of glucose and fructose.

248 (c)

Benzaldehyde condenses with propanoic anhydride to yield α , β - unsaturated acids in the presence of catalytic amount of sodium propionate

$$\begin{array}{c} \begin{array}{c} H & O \\ CH_3-CH - C \\ CH_3-CH_2-C \\ O \end{array} \\ \begin{array}{c} CH_3CH_2COO^* \\ CH_3-CH_2-C \\ O \end{array} \\ \begin{array}{c} CH_3-CH_2-C \\ O \\ CH_3-CH_2-C \\ O \end{array} \\ \begin{array}{c} CG_6H_5 \\ CH_3 \\ O \\ CG_6H_5-CH_2-C \\ O \\ CH_3-CH_2-C \\ O \end{array} \\ \begin{array}{c} CG_6H_5 \\ CH_3 \\ CG_6H_5-CH_2-C \\ O \\ CG_6H_5-C \\ O$$

249 (b)

CH₃CONHCH₃ neither forms semicarbazone nor oxime because it is a substituted amide. While other compounds have carbonyl group hence, they form semicarbazone or oxime

252 (c)

$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$

254 (d)

Calcium formate on distillation gives HCHO. $(HCOO)_2Ca \xrightarrow{Distillation} HCHO + +CaCO_3$

$$Ca \xrightarrow{Distillation} HCHO + +CaCO_3$$

255 (a)

$$RCH_2HCCl_2 \xrightarrow{HOH} RCH_2CH(OH)_2 \xrightarrow{Unsatble} RCH_2CHO$$

256 (d)

This is by S_N reaction. Cl⁻ is a better leaving group than C₂H₅O⁻ and the ethyl ethanoate is formed.

257 (a)

β-keto acids are the carboxylic acids that undergo decarboxylation easily

$$C_6H_5COCH_2$$
COO)H \triangle $C_6H_5COCH_3$

See the influence of -IE of Cl-atom. The negative charge on carboxy late ion is dispersed more in presence of two Cl-atoms.

260 (a)

Acids react with alcohols give ester, this process is known as esterification.

$$RCOOH + R'OH \rightarrow RCOOR'$$
 acid alcohol ester

261 (b)

When C₆H₅CHO condenses with (CH₃CO)₂O in presence of sodium acetate then cinnamic acid is formed. This reaction is called Perkin reaction.

$$C_6H_5 - CHO + (CH_3CO)_2O \xrightarrow{CH_3COONa} C_6H_5CH$$

= $CHCOOH + CH_3COOH$

benzaldehyde cinnamic acid

anhydride

$$C_{x}H_{y} + \left[x + \frac{y}{4}\right] O_{2} \longrightarrow xCO_{2} + \frac{y}{2}H_{2}O(v)$$
500 0 0
$$0 \qquad 500 x \quad \frac{y}{2} \times 500$$
Now, 500 $x = 2500 \quad \therefore \quad x = 5$

Now,
$$500 x = 2500$$

$$x = 5$$

$$500\frac{y}{2} = 3000$$
 $\therefore y = 12$

$$\therefore y = 12$$

∴ Alkane is C₅H₁₂.

264 (c)

As small rings cannot be formed because of internal strain

265 (d)

$$CH_3COOH \xrightarrow{Reduction} CH_3CH_2OH$$

All these do so.

266 (a)

When treated with Ba(OH)₂,acetone undergoes aldol condensation to form diacetone alcohol.

$$\mathsf{H_3C} - \overset{\mathsf{O}}{\underset{\mathsf{CH_3}}{\overset{\mathsf{H}}{\bigcup}}} \overset{\mathsf{H}}{\underset{\mathsf{CH_2}}{\overset{\mathsf{O}}{\bigcup}}} \overset{\mathsf{O}}{\underset{\mathsf{CH_2}}{\overset{\mathsf{O}}{\bigcup}}} - \mathsf{CH_3}$$

267 (b)

The Gattermann-Koch reaction is an example of electrophilic substitution and electrophile is

generated as,

$$CO + DCI \longrightarrow DCOCI \xrightarrow{AlCl_3} AlCl_4^+ + D C^+$$
 O
 (E)

The reaction takes place as,

269 (b)

$$>$$
C=O \leftrightarrow $>$ C- \bar{C} $\xrightarrow{\text{HCN}}$ $\xrightarrow{\text{Slow}}$ $>$ C-O $\xrightarrow{\text{H}}$ $\xrightarrow{\text{Fast}}$ $>$ C-OH

The rate determining step suggest addition of CN⁻

271 (d)

The α , β -unsaturated ketones add on ammonia to form β-amino compounds

272 (d)

Urea is one of the most important fertilizer as it does not change pH of soil. Urea, after hydrolysis gives ammonia and CO2. Ammonia is taken up by plants leaving behind CO2.CO2 is a very weak acidic oxide. It doesn't affect pH of soil

$$NH_2CONH_2 \xrightarrow{H_2O} 2NH_3 + CO_2$$

274 (c)

Aldehydes are easily oxidised to respective acids.

276 (c)

This reaction is an example of Claisen Schmidt reaction (Claisen condensation). The reaction is as fallows

280 (d)

Kjeldahl's method is not used for compounds having nitrogen atom in ring or having N-O and N-N bonds or to say heterocyclic ring with Natom, azo, azoxy and nitro compounds.

281 (a)

$$(CH_3CO)_2O + C_2H_5OC_2H_5 \rightarrow 2CH_3COOC_2H_5$$

282 (d)

In rest all HCHO is used.

283 (a)

Acetic acid is obtained by the oxidation of ethanol with alkaline KMnO4.

$$C_2H_5OH + [O] \xrightarrow{Alkaline \ KMnO_4} CH_3COOH$$

Ethanol acetic acid

284 (d)

The acid amides are amphoteric in nature. In amides, the lone pair of electrons on N atom remains delocalised (in resonance) with (C=0)

: Amides are not much basic but infact they are amphoteric in nature.

$$R \longrightarrow C \longrightarrow NH_2 \longrightarrow R \longrightarrow C \longrightarrow NH_2$$
structure of acid amide

285 (b)

Lithium aluminium hydride is a powerful reducing agent. It reduces acetic acid into ethanol.

$$CH_3COOH \xrightarrow{LiAlH_4} CH_3CH_2OH$$

286 (a)

The α -hydrogen atoms of acetaldehyde due to -

E effect of

group is slightly acidic in nature. In crossed aldol condensation between formaldehyde and acetaldehyde in the first step OH^- ion (from the base added) abstracts one of these acidic α -hydrogens to form carbanion or enolate ion which is stabilised by resonance.

$$HO^{-}+H-CH_{2}-C-H$$
 $Slow$
 $H_{2}O$
 $+:CH_{2}-C-H$

288 (b)

NaBH₄ is a mild reducing agent and can not reduce less reactive ester group

289 (c)

$$CH_3CHCl_2 \xrightarrow{KOH(aq.)} CH_3CH(OH)_2 \rightarrow CH_3CHO$$
unstable

Aldol condensation is shown by the molecules having α -carbon atom.

293 (a)

$$C_6H_5COOCH_3 \xrightarrow{Red} C_6H_5CH_2OH + CH_3OH$$

$$CH_3COCH_3 \xrightarrow{[0]} CH_3COOH + HCOOH$$

Ketones and aldehydes add to NaHSO3 to give white crystalline bisulphite addition product

$$R > C = O \xrightarrow{\text{NaHSO}_3} R > C < OH \\ SO_3 Na$$

297 (b)

COOHCOOH is dibasic acid. A polyprotic acid donates more than one proton.

302 (b)

 α , β -unsaturated acids add on halogen acids. The mode of addition is contrary to Markownikff's rule and may be described to the inductive effect of the carboxyl group.

303 (d)

Aldehydes are strong oxidising agents. They oxidise Tollen's reagent (ammoniacal AgNO3 to Ag), Fehling solution (to Cu2O) and Benedict solution (to Cu2O). The reactions are used to

detect the presence of aldehyde group in compound.

304 (a)

Secondary alcohols are oxidised to give ketones.

305 (c)

Grignard reagent (RMgX) with aldehyde) other than formaldehyde (HCHO) gives 2° alcohol. Aldehyde on reaction with C2H5OH/HCl gives acetal.

H₃C
$$\longrightarrow$$
 C \longrightarrow H + CH₃MgBr \longrightarrow H₃C \longrightarrow C \longrightarrow H

acetaldehyde

or

ethanal

OH

H₂O/H

H₃C \longrightarrow C \longrightarrow H

CH₃

2-propanol

CH₃

OC₂H₅

OC₂H₅

acetal

306 (b)

This reaction is an example of rearrangement, ie, migration of alkyl group from carbon to adjacent nitrogen atom and the group which is trans to the leaving group (-OH group) migrates leading to the formation of resonance stabilised imine

$$\begin{array}{c|c}
R-C-R' & \xrightarrow{PCI_5} & CO-C-R' & \longrightarrow O=C-R' \\
N-OH & & N-R & NHR
\end{array}$$

309 (b)

$$R$$
—CN $\xrightarrow{\text{SnCl}_2 + \text{HCl}} R$ CHO + NH₄Cl + SnCl₄

310 (c)

 $\left(\begin{array}{cc} \delta - & \delta + \\ Ph & Mg & Br \end{array}\right)^{\delta -}$ In phenyl magnesium bromide attached with that C-atom of carbonyl group which have low electron density (higher electropositive charge)

In carbonyl compounds, aldehydes are more

$$c = c \cdot \frac{Nu}{slow} > c \cdot \frac{c}{c} \cdot \frac{E^+}{fast} > c \cdot \frac{c}{c} = E$$

towards nucleophile in nucleophilic addition reaction because in ketones alkyl groups (due to + I effect) decrease the electropositive charge of carbon of carbonyl group. Hence attraction of nucleophile decreases. Moreover in the tetrahedral intermediate aldehyde have less steric repulsion than ketones and also the aldehyde

increases the negative charge on oxygen less in comparison of ketones.

Thus, on the basis of above reason the order of reactivity of acetone(I), acetaldehyde (II) and benzaldehyde (III) with PhMgBr is

$$C \stackrel{\text{II} > 1 > 111}{>} C \stackrel{\text{OMgBr}}{\longrightarrow} C \stackrel{\text{OMgBr}}{\longrightarrow} C$$

311 (c)

$$R_2 \text{CCl}_2 \xrightarrow{\text{HOH}} R_2 \text{C(OH)}_2 \longrightarrow R_2 \text{CO}$$

313 (b)

CH₃CONH₂+ is solid, CH₃Cl and CH₃SH are gas.

314 **(b)**

Cannizaro reaction,

HCHO + NaOH → CH₃OH + HCOONa

This reaction takes place by those compounds which has no α —H atom.

Inter molecular shift of hydride ion is key step of Cannizaro reaction

$$H > C = O + OH \longrightarrow H > C < OH$$

317 **(b)**

This is carbylamine reaction carried out by Br₂ + NaOH.

320 (b)

 $p\text{-}\mathrm{keto}$ acids are the only carboxylic acids that decarboxylate under mild heat

$$CH_3CH_2-\overset{\bigcirc{}}{C}-\overset{\bigcirc{}}{C}H_3\overset{\bigcirc{}}{C}-\overset{\bigcirc{}}{C}H_3\overset{\bigcirc{}}{C}+CH_3CH_2$$

321 (b)

$$CH_3COOH \xrightarrow{AIPO_4} CH_2 = CO + H_2O$$

323 **(b**)

$$CH_3CONH_2 \xrightarrow{P_2O_5} CH_3CN \xrightarrow{4H} CH_3CH_2NH_2$$

324 (b)

Hydrazine in the presence of strong base also reduces C=0 group to CH_2 (Wolff-Kishner reduction). If there is any base sensitive groups, such as – Br, –Cl,etc in carbonyl compound, this reagent is not advised

326 (c)

Hofmann reaction In this reaction acid amide group reacts with ${\rm Br_2}$ in presence of NaOH or KOH to give primary amine group. The amine is one carbon less than the parent amide. So, the reaction is known as Hofmann degradation reaction.

$$RCONH_2 + Br_2 + 4KOH \xrightarrow{\Delta} RNH_2 + 2KBr + K_2CO_3 + 2H_2O$$

327 (b)

The kjeldahl's method is based on the fact that nitrogen of an organic compound is quantitatively converted to $(NH_4)_2SO_4$ on heating with H_2SO_4 (conc.). The $(NH_4)_2SO_4$ is then treated with KOH to liberate NH_3 , which is absorbed in H_2SO_4 to obtain % of N.

328 (a)

The relative reactivity of the acid derivatives towards nucleophilic acyl substitution reaction follow the order:

 $R ext{COCl} > (R ext{CO})_2 ext{O} > R ext{COOR} > R ext{CONH}_2$ The ease with which these leaving groups depart decreases in the order: $Cl^- > RCOO^- > RCO^- > NH_2^-$. Consequently the relative reactivities of all these acid derivatives decreases in the order: acid chloride > anhydride > ester > amide

329 (b)

Hydrazine in the presence of a strong base reduces C=O group to CH₂ group

$$CH_3 - C - C_2H_5 \xrightarrow{NH_2 - NH_2} CH_3 - CH_2 - C_2H_5$$
 $CH_3 - CH_2 - C_2H_5 \xrightarrow{n_2 \text{butane}} CH_3 - CH_2 - C_2H_5$

This reaction is called Wolff-Kishner reduction

331 (c)

$$\begin{array}{c|c} O & O \\ \parallel & \parallel \\ 2\text{CH}_3 - \text{C} - \text{H} \xrightarrow{\text{Al}(\text{OC}_2\text{H}_5)_3} \text{CH}_3 - \text{C} \\ & - \text{OCH}_2\text{CH}_3 \end{array}$$

332 (c)

Only aldehydes reduce Tollen's reagent.

333 (c)

Since, the compound 'B' gave a 2,4dinitrophenylhydrazine derivative but did not answer halogen test or silver mirror test, it must

contains a >C=0 group, but it is neither a methyl ketone nor an aldehyde.

Moreover, compound 'B' is obtained by the oxidation of compound 'A' having molecular formula $C_5H_{12}O$, so the compound must be a secondary alcohol.

$$CH_3 - CH_2CH - CH_2 - CH_3 \xrightarrow{[0]} \xrightarrow{-H_2O}$$

$$OH$$

$$2^0 \text{ alcohol}$$

$$(Compound 'A')$$

$$CH_3 - CH_2C - CH_2 - CH_3$$

$$||$$

$$O$$

$$Ketone$$

$$(Compound 'B')$$

334 (d)

All are facts about CH3COCH3.

335 (a)

Benzaldehyde forms two isomeric semicarbazone with semicarbazide.

338 (d)

Acid halides and acid anhydrides are acylating agent.

349 (c)

342 (c)

A carboxylic acid contains —COOH gp. and an alkyl group.

343 (d)

CH₃COC₆H₅ will show iodoform test.

346 (c)

Acetic acid on reduction with lithium aluminium hydride (LiAl H_4) gives ethyl alcohol while on reduction with HI and red P gives ethane.

$$CH_3COOH \xrightarrow{LiAlH_4} CH_3CH_2OH$$

ethyl alcohol

$$\mathsf{CH}_3\mathsf{COOH} \xrightarrow{\mathsf{Red} \; \mathsf{P} \; + \mathsf{HI}} \mathsf{CH}_3 - \mathsf{CH}_3$$

Ethane

Hence, reagent A and B are respectively $LiAlH_4$ and $HI/red\ P$.

348 (c)

Aldol condensation is given by those aldehydes and ketones which have at least one α —H atom. When this reaction takes place between two different aldehydes and ketones, it is called across aldol condensation, e.g.,

C(H₃C)₂ +—CH₂COCH₃ 4-hydroxy-4 methyl pentan-2 one (from 2 molecules of acetone)

+ve charge is max, intensified

less intensified

More intensified is +ve charge on C-atom, more is tendency to attack by nucleophile but due to steric hindrance, this tendency decreases.

352 (b)

Esters on reaction with excess of Grignard reagent produce 3° alcohol.

354 (a)

The enzyme must contain at least one atom of Se. : 0.5 g enzyme, mol. weight = 100

∴ 78.4 g enzyme, mol. weight =
$$\frac{100 \times 78.4}{0.5}$$

= 1.576×10^4

(3º alcohol)

356 (b)

CH₂=CH—CHO is acrolein.

357 (a)

HCHO has one carbon and reduces Tollen's reagent.

358 (d)

Aldehydes and ketones both can react with 2, 4dinitrophenyl hydrazine as

RCH O + H₂ N.NHC₆H₅
$$\longrightarrow$$
 RCH=N.NHC₆H₅ + H₂O aldehyde phenyl hydrazone

 R_2C O + H₂ N.NHC₆H₅ \longrightarrow R_2C =N.NHC₆H₅ + H₂O

359 (d)

$$CH_{3}COOH + 4H \xrightarrow{\text{LiAlH}_{4}} CH_{3}CH_{2}OH + H_{2}O$$

$$(A)$$

$$CH_{3}CH_{2}OH + CH_{3}COOH \xrightarrow{\text{H}_{3}O^{+}} CH_{3}COOC_{2}H_{5} + H_{2}O$$

$$(B)$$

361 (d)

Addition of K2SO4 increases the b. p. of H2SO4.

365 (d)

 $RCOOAg + R'X \rightarrow RCOOR'$ (ester); this is called Hunsdiecker reaction.

366 (b)

The reactivity order of acid derivatives is based on nature of leaving gp., resonance and inductive effect.

367 (a)

 $CH_3COOH + HOC_2H_5 \rightarrow CH_3COOC_2H_5$

Due to bitter almonds odour.

371 (b)

In carboxylic acid the oxygen attached to carboxyl carbon is more electronegative and withdraws the electrons of bond

Hence, protonation occurs at the carboxyl oxygen

373 **(b)**

$$RCO OH + H OR' \longrightarrow RCOOR'$$

Alcohol loses H-atom and thus, reactivity order: 3 °< 2°< 1°.

375 (b)

AgNO₃ gives precipitation of silver halides.

376 (c)

One molecule is oxidised and one is reduced on the cost of other.

377 (b)

This is Cannizzaro's reaction.

378 (d)

 $CH_3COCH_3 \xrightarrow{LiAlH_4} CH_3CHOHCH_3;$ This will give iodoform test.

379 (b)

Aldehydes restore pink colour of Schiff's reagent.

380 (a)

$$CH_3CH_2OH \xrightarrow{Cl_2} CH_3CHO \xrightarrow{Cl_2} CCl_3CHO$$

381 (c)

$$RCOAg + X_2 \longrightarrow RX + AgX + CO_2$$

(CCl₄)

385 **(b)**

In Clemmensen's reduction, aldehyde (RCHO) and ketones (R - CO - R') are reduced into hydrocarbons (R - R').

RCHO + 6[H]
$$\xrightarrow{\text{Zn amalgamated}}$$
 RCH₃ + 2H₂O

386 (b)

Na₂S and NaCN are decomposed on heating with HNO₃ to form H₂S and HCN in gaseous phase otherwise they will give precipitate with AgNO₃

$$NaCN + HNO_3 \rightarrow NaNO_3 + HCN \uparrow$$

 $Na_2S + 2HNO_3 \rightarrow 2NaNO_3 + H_2S$

390 (a)

The *cis* form is maleic acid; *trans* form is fumaric acid.

391 (c)

Follow mechanism of Cannizzaro's reaction.

392 (b)

Formic acid also act as a reducing agent as it can reduce Tollen's reagent, Fehling solution, mercuric chloride and $KMnO_4$ etc.

393 **(d**

Penicillin, an antibiotic is discovery of 20th century.

394 (c)

HCHO is gas at room temperature. Its aqueous solution called formalin (42% HCHO \pm 8% CH $_3$ OH) is used as preservative for biological specimens.

395 (b)

Chloral is CCl₃CHO, i. e., 2,2,2 - trichloroethanal.

396 (b)

Calcium adipate on dry distillation gives cyclopentanone.

398 (h)

Acetaldehyde is the only aldehyde which gives +ve iodoform test. Also, only aldehydes reduce Fehling's solution.

401 (c)

Due to tautomerism,

$$CH_3-C-CH_2COOC_2H_5 \Longrightarrow CH_3 C=CHCOOC_2H_5$$

$$0$$
OH

402 (a)

It gives benzoyl chloride (C₆H₅COCl).

$$C_6H_5COOH + PCl_5 \xrightarrow{100^{\circ}C} C_6H_5COCl + POCl_3 + HCl$$
Benzoyl chloride

403 (a)

The reaction occurs as follows

$$H_3C$$
 \longrightarrow C \longrightarrow Ph \longrightarrow H^+ H_3C \longrightarrow C \longrightarrow Ph

1,1-diphenyl ethanol

404 **(b)**

When addition of HCN takes place at α , β -unsaturated carbonyl compounds, it gives β -cyano compounds

$$CH_2 = CH - C - CH_3 + HCN \xrightarrow{OH^-}$$

405 (c)

$$R - X \xrightarrow{CN^-} R - CN \xrightarrow{NaOH} RCOONa$$

406 (d)

Acidic strength is the tendency to give H⁺ ions. The correct order of acidic strength of given acids is

 $CH_3COOH < C_6H_5COOH < HCOOH$

407 (a)

$$3HCOOH + PCl_3 \rightarrow 3HCOCl + H_3PO_3$$

408 (c)

$$RCOOH + CH_2N_2 \rightarrow RCOOCH_3 + N_2$$
; methyl esters are formed.

409 (c)

The nucleophilic addition of carbanion of α , β unsaturated carbonyl compounds is known as

Michael addition

410 (a)

Tamarind contains dextro-rotatory pot. Salt of tartaric acid.

411 (d)

Rosenmund's reduction involves the reduction of acid halide into aldehyde by means of Pd/BaSO₄. $CH_3COCl \xrightarrow{Pd/BaSO_4} CH_3CHO + HCl$

412 (a)

HCHO does not have α C-atom and hence no α H – atom.

Therefore, it doesn't give aldol condensation.

413 (c)

Benzaldehyde reacts with methyl amine to give Schiff's base

$$\begin{aligned} \mathsf{C}_6\mathsf{H}_5 - \mathsf{CHO} + \mathsf{H}_2\mathsf{NCH}_3 &\to \mathsf{C}_6\mathsf{H}_5\mathsf{CH} \\ &= \mathsf{N}.\,\mathsf{CH}_3 + \mathsf{H}_2\mathsf{O} \end{aligned}$$

Schiff's base

415 (c)

% C =
$$\frac{12 \times 0.66 \times 100}{44 \times 0.2}$$
 = 90
∴ %H = 100 - 90 = 10

417 (b)

A + NaOH →alcohol+acid

Thus, it is Cannizaro reaction. A is thus aldehyde without H at α -carbon.

(like C₆H₅CHO, HCHO)

 $2C_6H_5CHO + NaOH \rightarrow C_6H_5CH_2OH + C_6H_5COONa | 431$ (c) benzaldehyde

$$R$$
— $CONH_2 + Br_2 + 4KOH \rightarrow RNH_2 + K_2CO_3 + 2KBr + 2H_2O$

This is Hofmann's bromamide reaction.

419 (c)

The presence of electron withdrawing gp. in carboxylic acid increases acidic character. Also electron withdrawing nature of F is more than Cl.

420 (a)

Higher is K_a or lower is pK_a , stronger is acid.

422 (b)

It is definition of polymerisation.

423 (b)

-COOH is meta-directing group

$$CH_3$$
 $COOH_{+Br_2}$
 Fe
 $COOH_{+Br_3}$
 $COOH_{+Br_3}$

424 (c)

- I effect increases acidity.
- +1 effect decreases acidity.
- -CF₃ exerting more-I effect than Meo -Me₂CH - exerting more +1 effect than - CH₃

425 (a)

Acetic acid on dehydration produce acetic anhydride. P2O5 is a dehydrating agent it dehydrate CH3COOH to anhydride.

$$2CH_3COOH \xrightarrow{P_2O_5} (CH_3CO)_2O$$

acetic anhydride

426 (a)

It is better to called aldol condensation.

428 (c)

$$2(CH_3COO)_2Ca \xrightarrow{Dry distillation} 2CH_3COCH_3 + 2CaCO_3$$

429 (a)

Aromatic aldehydes reduce Tollen's reagent. Since they are less reactive they do not reduce Fehling's solution and Benedict's solution.

Vinegar is 6 to 10% aqueous solution of CH₃COOH.

433 (b)

This is simple Cannizzaro's reaction, i.e., intermolecular.

438 (c)

Tollen's reagent is ammoniacal $AgNO_3$. $2AgNO_3 + 2NH_4OH \rightarrow 2Ag(OH) + 2NH_4NO_3$ $2Ag(OH) \rightarrow Ag_2O + H_2O$

439 **(b)**

440 (c)

$${\rm CH_3CH_2CHCl_2} \stackrel{{\rm HOH}}{\longrightarrow} {\rm CH_3CH_2CH(OH)_2} \\ {\longrightarrow} {\rm CH_3CH_2CHO} \\ {\rm Unstable}$$

441 (b)

$$CH_3CHO \xrightarrow{(C_2H_5O)_3Al} CH_3COOCH_2$$
. CH_3
This is Tischenko's reaction.

442 (c)

$$n$$
HCHO $\xrightarrow{\text{Polymerisation}}$ (HCHO) n ; $n = 6$ to 100.

443 (c)

Magenta is rosaniline hydrochloride which is decolourised by H₂SO₃ to give Schiff's reagent.

444 (a)

Methanal is formed during photosynthesis of plants.

454 (c)

Carbonyl compound reacts with Grignard reagent following nucleophilic addition. More is +ve charge on C^+ centre of carbonyl group, easier is nucleophilic attack.

$$H_{3C}$$
 $C = 0 \longleftrightarrow H_{3C}$ $C + 0$

Positive charge on C+ is dispersed due to -IE of $-CH_3$ gp.

Positive charge on C^+ is dispersed more due to -IE of two CH_3gp .

$$C_{6}H_{5}$$
 $C=0$ $C_{6}H_{5}$ $C=0$

Positive charge on C^+ is intensified due to +IE of two C_6H_5 gp. But \bigcirc CO gp. is in conjugation with π system of benzene nuleus and the resonance in ring develops electron deficiency at C atom of \bigcirc CO and thus deactivates C^+ centre towards nuleophilic attack. The -R effect over powers +IE and thus diphenyl ketone is least reactive.

445 (a)

$$\beta$$
 – keto acids are readily decarboxylated.

447 (a)

$$\begin{array}{c} COC1 \\ \hline \\ Pd\text{-}BaSO_4 \end{array} \begin{array}{c} O \\ C-H \end{array}$$

It is Rosenmund reaction (reduction).

449 (b)

 $\label{eq:continuous} \mbox{Acetaldoxime is the oxime of acetaldehyde.} \mbox{CH}_3 - \mbox{CH} - \mbox{O} + \mbox{H}_2 \mbox{NOH} \rightarrow \mbox{CH}_3 \mbox{CH}$

 $= NOH + H_2O$ Acetaldehyde hydroxyl amine acetaldoxime

451 (b)

 PCl_5 is a chlorinating agent. It adds to ethyl benzoate to give ethyl chloride and benzoyl chloride.

$$\mathsf{C_6H_5COOC_2H_5} \xrightarrow{\mathsf{PCI_5}} \mathsf{C_6H_5COCl} + \mathsf{C_2H_5Cl} + \mathsf{POCl_3}$$

452 **(b)**

Lactic acid prepared from meat extract of muscles is *dextro*-rotatory and is therefore called sarcolactic acid (Greek word: *sarkos*—flash).

453 (d)

Phenols are weak acidic and thus, soluble in strong alkali.

This ketone is further reacted with excess CH_3MgBr (Grignard reagent) and to give t-alcohol as the final product. Hence, it is a tertiary butyl alcohol.

457 (a)

The reaction series takes place as $\begin{array}{c} \text{COOH} \\ | \\ | \\ \text{COOH} \end{array} \xrightarrow[]{(i) \ 2C_2H_5OH} \begin{array}{c} \text{COOC}_2H_5 \\ | \\ \text{COOC}_2H_5 \end{array} \xrightarrow[]{(ii) \ 2NH_3} \begin{array}{c} \text{CONH}_2 \\ | \\ \text{CONH}_2 \end{array}$

$$\frac{P_2O_5}{-2H_2O} > \frac{CN}{CN}$$

458 (a)

Citric acid is found in lemon. Therefore, lemon gives sour taste.

459 (b)

$$HCOOH + Ag_2O \rightarrow H_2O + CO_2 + 2Ag_{Silver}$$
Mirror

461 (a)

Pyrene is CCl₄; find percentage of Cl in each.

462 (c

Only aliphatic aldehydes give red ppt of Cu₂O with Fehling solution.

∴Only acetaldehyde gives red ppt. with Fehling solution.

465 (d)

All possible products are formed, *i. e.*, acetone from calcium acetate, formaldehyde from calcium formate and acetaldehyde from calcium acetate and calcium formate.

466 (a)

Aldehydes are oxidised by weak oxidising agents like Tollen's reagent (which is ammoniacal AgNO₃) but ketones cannot be oxidised by them.

RCHO +
$$2[Ag(NH_3)_2]^+3OH^- \xrightarrow{NH_4OH} RCO\overline{O}$$

+ $2Ag \downarrow + 2H_2O + 4NH_3$

Aldehyde Tollen's reagent silver nirror

Ketone + Tollen's reagent → no reaction.

467 **(b)**

To remove halogen oxides and halogen.

472 (c)

Urotropine is hexamethylene tetramine, i.e., $(CH_2)_6N_4$, used as medicine for gout and urine infections.

473 (a)

$$(HCOO)_2Ca + (CH_3COO)_2Ca$$

$$\xrightarrow{Dry \text{ distillation}} 2CH_3CHO$$

$$+ 2CaCO_3$$

476 (d)

$$\begin{array}{c|c} 0 & 0 \\ || & || \\ CH_3 - C - Cl \xrightarrow{KOH} CH_3 - C - O^- \\ CH_3CH_2Cl \longrightarrow CH_3CH_2OH \\ CICH_2 - CH_2Cl \longrightarrow HOCH_2 - CH_2OH \\ CH_3CHCl_2 \longrightarrow CH_3 - CH(OH)_2 \\ & Intermediate \\ \longrightarrow CH_3 - CH = O \\ & Acetaldehyde \end{array}$$

478 (c)

$$\begin{array}{c} \operatorname{CH_3CH_2COOH} \xrightarrow{\operatorname{CI_2}} \operatorname{CH_3CHCOOH} \\ & \operatorname{red} \operatorname{P} \\ & \operatorname{(HVZ \, reaction)} \end{array}$$

Cl

$$\xrightarrow{\text{alcoholic KOH}} \text{CH}_2 = \text{CHCOOH}$$

acrylic acid

480 (d)

Both (a) and (b) are for preparation of aldehydes only.

481 **(b)**

Percentage of N in urea = $\frac{28}{60} \times 100$

482 (a

Collin's reagents is used to convert $-CH_2OH \rightarrow -CHO$

483 (a)

Only aldehydes react with both Tollen's reagent and Fehling's solution

CH₃CHO CH₃COOH
(a) (b)
Aldehyde acid

 $\begin{array}{ccc} \mathsf{CH_3COCH_3} & & \mathsf{CH_3CH_2COOH} \\ & \mathsf{(c)} & & \mathsf{(d)} \\ & \mathsf{Ketone} & & \mathsf{acid} \end{array}$

CH₃CHO (ethanal) is the only aldehyde in given choices.

So, it reacts with both Tollen's reagent and Fehling solution.

CH₃CHO +Ammoniacal AgNO₃ → Ag mirror (Tollen's reagent)

 $CH_3CHO + Cu^{2+}ions complexed \rightarrow Cu_2O$ With tartarate anion red ppt.

484 (d)

It is called Clemmensen reduction.

485 (c)

Tollen's reagent, Fehling solution and NaOH/NaI/ H^+ are not able to change butan-2-one (ketone) into propanoic acid because these are mild oxidising agents, so NaOH/ I_2 firstly from iodoform along with C_2H_5COONa with butan-2-one (ethyl methyl ketone). In these C_2H_5COONa reacts with acid (H^+) to give C_2H_5COOH (propanoic acid).

0
||
$$CH_3 - C - CH_2 - CH_3 + 3I_2 + 4NaOH$$

butan-2-one
(ethyl methyl ketone)
 $\rightarrow CHI_3 \downarrow + C_2H_5COONa + 3NaI + 3H_2O$
iodoform
 $C_2H_5COONa + H^+ \rightarrow C_2H_5COOH + Na^+$
Propanoic acid

486 (a)

The acidic strength of the attached group is in the following order:

Note Due to attachment of electron attractive group acidic strength increases and carboxylic acids are more acidic than phenols.

The two moles of NH₂ ions will abstract two moles of a most acidic hydrogen out of the four moles of hydrogen present per mole of the given acidic compounds. Hence, after abstraction of two moles of hydrogen and obtained product will be as shown

488 (a)

HCHO Conc.NaOH HCOOH + CH₃OH
methanal formic acid methyl alcohol
Thus, reaction is called Cannizaro's reaction.

489 (a)

Fehling solution is cupric ion complex with tartarate anion. Aldehydes reduce it to red precipitate. The red precipitate is chemically Cu_2O

$$\begin{array}{cccc} & & & & & & & & & \\ & & & & & & & & \\ & CH_3-C-CH_3 & & & & & \\ & acetone & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

- Only acetone which is ketone not an aldehyde does not give iodoform test.
- 491 **(c)**Hydrated oxalic acid is H₂C₂O₄ · 2H₂O
- 493 **(c)**
- $RCH=CHCOOC_2H_5 \xrightarrow{[H]} RCH_2CH_2COOC_2H_5$ 495 **(d)**
- Formaldehyde does not give iodoform reaction. 496 **(c)**
 - Acetone gives aromatic compound mesitylene on condensation with conc H_2SO_4

497 **(c)**

 $CH_3CH_2COOH \xrightarrow{H_2O_2} CH_3(OH)CH_2COOH$

500 (a) $NH_2CONH_2 \xrightarrow{Urease} NH_3 + CO_2$

501 (a)

Cannizaro's reaction is given by aldehydes (RCHO) lacking H at α -carbon or lacking α -carbon (as in HCHO). With NaOH, there is formation of acid salt (RCOO⁻) by oxidation and alcohol (RCH₂OH) by reduction.

502 (a)

Aldehydes which does not contain α —hydrogen atom undergo self oxidation and reduction on treatment with conc. Solution of alkali. This reaction is called Cannizaro reaction.

504 (a)

 $NaCN + AgNO_3 \rightarrow AgCN + NaNO_3$

506 **(c)**

It is a fact.

508 (b)

Acetaldehyde cannot show Lucas test because Lucas test is given by alcohols only. It is used in the distinction between primary, secondary and tertiary alcohols. Conc. $HCI + anhydrous\ ZnCI_2$ is called Lucas reagent.

509 (a)

Lassaigne's tests involves the preparation of sodium extract by fusing organic compounds with Na and then extracting them with water.

510 (c)

511 (b)

Out of all alternates pK_a is smallest for CH₃CH₂CF₂COOH

512 (a)

HCOOH is reducing agent. HCOOCH₃ $\xrightarrow{\text{HOH}}$ HCOOH + CH₃OH

513 (c)

Presence of electron withdrawing atom (-X) increases the acidic nature. Presence of electron repelling gp. $(-CH_3)$ decreases the acidic nature.

515 (b)

Mol. wt. of compound =
$$\frac{WRT}{PV}$$

= $\frac{0.22 \times 0.0821 \times 273 \times 1000}{1 \times 112}$ = 44

Now find % of C; % of H = 100 - % of C Now find molecular formula.

516 (d

The reactivity order for acid derivatives due to better leaving group is: $RCOCl > (RCO)_2O > RCOOR > RCONH_2$

517 (c)

Out of the given acids, strongest is HCOOH. highest K_a value Since $pK_a = -\log K_a$ Thus lowest pK_a is of HCOOH.

518 (d)

Formaldehyde with ammonia gives a medicinal compound hexamethylene tetramine (urotropine), which on nitration gives one of the most powerful explosive, named cyclonite or *RDX*.

$$6$$
HCHO + 4 NH $_{4}$ \longrightarrow $(CH2)6N4 + 6 H₂O urotropine$

hexamethylene tetramine

519 (a)

Solubility of organic compounds in water decreases with mol. wt. due to increasing hydrophobic character of alkyl or aryl gps.

520 (a)

CLICK HERE

The presence of electron attracting gp.—C—

on -OH increases the tendency of oxygen to attract O-H bond pair more effectively towards

523 (b)

CCl₃CHO formed from CH₃CHO by the action of Cl₂ is used to prepare DDT.

525 (c)

Prior to Wöhler preparation, organic compounds were assumed to be derived only from living organisms.

526 **(b)**

 $\mathsf{CH}_{3}\mathsf{CHClCOOH} \xrightarrow{\mathsf{KOH} \, \mathsf{alc.}} \mathsf{CH}_{2} {=} \mathsf{CHCOOH};$ Elimination reaction

528 (b)

LiAlH₄ reduces —COOH to — CH₂OH but does not influence C=C.

529 (b)

Acid derivatives do not show nucleophilic addition. Also, CH₃COOCOCH₃ is less reactive than CH₃CHO.

531 (c)

Y is CH₃CN; Z is CH₃COOH.*

532 **(b)**

HVZ reaction occurs in presence of halogen and P (catalyst).

534 (b)

Both C-0 bonds are identical and each O possesses partial negative charge.

535 (c)

$$CH_3CHO \xrightarrow{[O]} CH_3COOH$$

In the given reaction, OH- group replaces the group present in side chain as ketonic group is less reactive

537 (c)

Due to pleasant odour, it is used in perfumery and also producing sleeping drug.

538 **(b)**

organic compound +
$$HNO_3 + BaCl_2 \rightarrow BaSO_4$$

539 (d)

Note Cannizaro reaction is due to the absence of α -hydrogen atom.

541 (d)

Many fruits contain esters such as pineapple has ethyl butyrate, raspberry has isobutyl methanoate, banana has n-pentyl ethanoate, orange has octyl ethanoate, etc.

542 **(b)**

Due to strong negative inductive effect shown by -Cl and - OCOCH3 group, acid chloride and acid anhydride are highly reactive among acid derivatives. They react independently with water even in the absence of catalyst to give carboxylic acid.

It exists as zwitter ion, an internal salt structure. CH₂NH₂COOH → NH₃CH₂COO

545 (a)

Aldehyde, having no α -hydrogen atom, undergoes Cannizaro reaction in which two molecules of the aldehyde are involved, one molecule being converted into the corresponding alcohol, and the other into the acid. The usual reagent for the Cannizaro reaction is aqueous or ethanolic alkali

2HCHO + NaOH → HCOONa + CH₃OH

547 (a)

In the presence of base catalyst, intramolecular aldol condensation and ring closure takes place

551 (a)

$$CH_3$$
 CH_3
 $CH_3 - C = O + H_2N. NH_2 \xrightarrow{-H_2O}$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 $CH_3 - C = NNH_2 \xrightarrow{[OH]} CH_3 - C - H$
 $CH_3 - C = NNH_2 \xrightarrow{[OH]} CH_3 - C - H$

In Wolff-Kishner reduction carbonyl compounds are reduced to alkanes by using NH2. NH2 and KOH/glycol.

552 (a)

CH₃-CH₂-CH₂-C-CH₃
$$\rightarrow$$
 gives positive test of 2-pentanone carbonyl group

$$\begin{array}{c|c}
 & Fehling \\
 & solution
\end{array}$$
No reaction
$$\begin{array}{c|c}
 & NaOH + I_2 \\
\hline
 & Reduction
\end{array}$$
CH₃CH₂-CH₂-CH₂CH₃

$$\begin{array}{c}
 & n - pentane
\end{array}$$

- (1) Ketone gives negative test with Fehling
- (2) Ketone containing COCH₃ group gives positive haloform test

Esters are pleasant smelling liquids having fruity smell.

554 (b)

It is a test for —COOH gp.;

R—COOH + NaHCO₃ \rightarrow RCOONa + H₂O + CO₂ \uparrow

555 (d)

 $H-C\equiv N \xrightarrow{HOH} HCOOH+NH_3$

556 (a)

Aldehyde and ketone having α -hydrogen atom undergo aldol condensation in presence of dilute base to give β -hydroxy aldehydes or ketones. Acetone has α -hydrogen atom, hence it will give aldol condensation reaction

557 (b)

Benedict solution contains CuSO₄, sodium citrate and sodium carbonate.

559 (b)

Cannizaro reaction is given by only those aldehydes which does not have α -hydrogen atom. As such acetaldehyde will not give Cannizaro reaction.

560 (c)

 $RCOOH + NaHCO_3 \rightleftharpoons RCOONa + H_2O + CO_2$ or $RCOOH + HCO_3^- \rightleftharpoons RCOO^- + H_2O + CO_2$ Conjugate base, RCOO is more stable. That is why equilibrium shifts in the forward direction.

Halogen compounds + HNO₃ + AgNO₃ → AgCl

562 (a)

Positive IE of alkyl gp. decreases positive charge on C⁺ centre of carbonyl gp. and thus, reactivity order is, HCHO > CH₃CHO > C₂H₅CHO > CH₃COCH₃

564 (c)

Acetophenone can be prepared by Friedel-Craft's reaction. By treating benzene with acetyl chloride in presence of anhydrous aluminium chloride acetophenone is obtained.

$$\begin{array}{c} C_6H_5H + ClCOCH_3 \xrightarrow{Anhyd.AlCl_3} C_6H_5COCH_3 + HCl \\ Benzene & acetyl & acetophenone \\ & chloride \end{array}$$

566 (d)

Bond energy for catenation of carbon is maximum $(85 \text{ kcal mol}^{-1}).$

568 (a)

Three moles of acetone condense in presence of conc. H_2SO_4 to give mesitylene.

569 (d)

Aldehydes and ketones condense with alcohol to give aceta and ketals respectively, $e.\,g.$,

$$CH_3CHO + 2C_2H_5OH \xrightarrow{-H_2O} CH_3CH < OC_2H_5$$
acetal

574 (b)

Caproic acid is CH₃(CH₂)₄COOH.

575 (c)

Anhydrous lime or C₆H₆ disturbs the nature of azeotropic mixture of alcohol and water.

576 (c)

$$\begin{array}{c} \text{CHO} \\ \text{CH}_3\text{CHO} \stackrel{\text{SeO}_2}{\longrightarrow} \Big| \\ \text{CHO} \end{array}$$

577 (d)

All are facts about CH3CHO.

578 (d)

$$\begin{array}{c} \text{CH}_3\text{COOH} \xrightarrow{\text{CaCO}_3} (\text{CH}_3\text{COO})_2\text{Ca} \\ (\text{CH}_3\text{COO})_2\text{Ca} \xrightarrow{\Delta} \text{CH}_3\text{COCH}_3 + \text{CaCO}_3 \end{array}$$

579 (d)

$$CH_3CHO + CH_3CHO \xrightarrow{Alkali} CH_3CH(OH)CH_2CHOH$$

581 (c)

$$CH_3CH_2OH \xrightarrow{Cl_2} CH_3CHO + 3HCl;$$

 $CH_3CHO \xrightarrow{Cl_2} CCl_3CHO$

582 (a)

Paraldehyde is used as hypnotic and soporific (sleep producing) drug.

585 (c)

In p-nitrobenzoyl chloride, $-\mathrm{NO}_2$ group has a – I and – R -effect and this is greater from the p-position than from m-or o-positions. Thus, $-\mathrm{NO}_2$ group reduces the electron density at the carbon atom attached to – Cl atom and facilitate its releasing and hydrolysis of benzoyl chloride

Whereas, CH_3O -group has a strong +R-effect and a weak -I-effect. At p-position CH_3O -group exerts its strong +R effect. As a result, electron density at C-atom attached to -CI atom increases and the cleavage of C -CI bond becomes difficult. Hence, the order of reactivity of hydrolysis of acid chlorides:

$$p - O_2NC_6H_4COCl > PhCOCl$$

> $p - CH_3OC_6H_4COCl$

592 (a)

586 (c)

Amides react with bromine and caustic soda to give their corresponding primary amines. Thus, acetamide gives methanamine. This reaction is known as Hofmann's bromamide degradation reaction.

$$H_3C - C - NH_2 + Br_2 + 4KOH \xrightarrow{343 \text{ K}} 2KBr + K_2CO_3 + H_3C - NH_2 + 2H_2O$$

acetamide

methanamine

587 **(b)**

The reaction produced as

$$H_2C-CH_2$$
 H_0C-OCH_3
 β -lactone

 H_2C-CH_2
 H_0C-OCH_3
 β -lactone

 $\beta\text{-lactone}$ do not exist but can only be made by special method

588 (a)

COOH gp. of salicylic acid is replaced during nitrati

589 (c)

$$P_{N_2} = 715 - 15 = 700 \text{ mm}$$

$$V = 55 \text{mL}$$

$$PV = \frac{w}{m} RT$$

$$\frac{700}{760} \times \frac{55}{1000} = \frac{{}^{w}N_2}{28} \times 0.0821 \times 300$$

$${}^{w}N_2 = 0.058 \text{ g}$$

$$%N_2 = \frac{0.058}{0.35} \times 100 = 16.45$$

590 (b)

Paraldehyde is used as hypnotic and soporific (sleep producing) drug.

591 (a)

- Organic compound gave an oxime with hydroxyl amine, therefore, it must be an aldehyde or ketone.
- Organic compound did not give silver mirror with Tollen's reagent, therefore, it cannot be an aldehyde.

Therefore, compound is ketone and its molecular formulae with be CH₃COCH₃.

The cannizzaro product of given reaction yields 2,2,2-trichloroethanol.

$$CI - C - C \downarrow O \qquad NaOH \longrightarrow CI - C - C \downarrow O \qquad + CI - C - CH_2OH$$

$$CI \longrightarrow CI \qquad CI \qquad CI \longrightarrow CI \qquad CI \longrightarrow CI \qquad CI \longrightarrow CI$$

593 (b)

CH₃COCl + CH₃COONa → (CH₃CO)₂O + NaCl Acetylchloride sod. acetate acetic anhydride

594 (a)

COOEt
$$H_3O^+$$
 $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$

 β –keto acid undergoes decarboxylation when

595 (b)

Salicylic acid gives aspirin on reaction with acetic anhydride in presence of H2SO4

596 (b)

well as -CHO group.

597 (c)

 $\text{CH}_3\text{NH}_2 + \text{CH}_3\text{COCl} \rightarrow \text{CH}_3\text{NHCOCH}_3 + \text{HCl}$

Fehling's solution is the solution of CuSO₄ + NaOH + Rochel salt (sodium potassium tartarate). Aldehydes give red precipitate with Fehling's solution.

599 (c)

In the Rosenmund's reaction, acid chlorides are converted to corresponding aldehydes by catalytic reduction. The reaction is carried out by passing through a hot solution of the acid chloride in the presence of Pd deposited over BaSO₄. Here, barium sulphate decrease the activity of palladium

$$RCOCl + H_2 \xrightarrow{Pd/BaSO_4} RCHO + HCl$$

602 (a)

Acids shows H-bonding and thus, have higher b.p. 603 (a)

P₂O₅ is dehydrating agent, hence acid gives anhydrides on dehydration by P2O5.

$$2RCOOH \xrightarrow{P_2O_5} (RCO)_2O$$

604 (d)

2, 3-dimethyl propanal does not undergo Cannizaro's reaction due to absence of α -H atom.

605 (c)

α-chloro butyric acid is more stronger than others due to -/ effect of Cl-.

607 (d)

The Sulphur of organic compound gives Na₂S.

608 (c)

In the carbonyl group, carbon atom is in a state of sp^2 hybridisation. One sp^2 hybrid orbital overlap with a unhydridised p-orbital of oxygen to form $C-O\sigma$ -bonds. The remaining two sp^2 orbitals of carbon from σ -bonds with s-orbitals of hydrogen or sp^3 -orbitals of carbon of the alkyl groups. The $C - O \pi$ -bond is formed by the sideways overlap of p-orbitals of carbon and oxygen. Thus, the three σ -bonds of carbonyl carbon lie in one plane and are 120° aprat

$$x$$
c=0

609 (d)

Both show reducing nature and thus, reduce each of the following. The distinction in these two can be however made by NaHCO₃ where HCOOH gives effervescences.

610 (a)

Oxidation of CH₃COOH is not possible.

611 (c)

e.g., CH3CH2CH2COOH and (CH3)2CHCOOH are chain isomers CH3(CH2)CHCH2COOH and CH3CH2 CHCOOH

is optical isomer

CH₃CH₂CH₂COOH and CH₃CH₂COOCH₃ are functional isomers.

612 (a)

Carbonic acid is less acidic than carboxylic acids whereas more acidic than phenols and alcohols. Hence, order of acidic strength.

 $RCOOH > H_2CO_3 > C_6H_5OH > ROH$

614 (a)

In presence of dil. HCl, acetamide is hydrolysed by boiling, the product obtained is acetic acid (CH₃COOH).

$$\begin{split} \mathrm{CH_3CONH_2} + \mathrm{H_2O} &\rightarrow \mathrm{CH_3COOH} + \mathrm{NH_3} \\ \mathrm{CH_3CONH_2} + \mathrm{H_2O} + \mathrm{HCl} &\rightarrow \mathrm{CH_3COOH} + \mathrm{NH_4Cl} \end{split}$$

617 (c)

A characteristic test for carbonyl gp., red salt is formed.

618 (d)

$$\begin{array}{c} \mathsf{CH_3COOC_2H_5} + \mathsf{CH_3COOC_2H_5} \\ \xrightarrow{\mathsf{C_2H_5ONa}} \mathsf{CH_3COCH_2COOC_2H_5} \end{array}$$

This is Claisen condensation in presence of $NaOC_2H_5$ involving $\alpha\text{-H-atom}$ of ester.

619 (b)

This is the example of Baeyer-Villager oxidation and oxy-insertion takes place generally at the alkyl side

$$\begin{array}{c} H_{3}C \\ H_{3}C \\ CH-C-C_{2}H_{5} \\ \hline \\ H_{3}C \\ CH-C-C_{2}H_{5} \\ \hline \\ RCOOOH \\ H_{3}C \\ CH-C-O \\ H_{3}C \\ CH-C-O-C-C-R \\ \hline \\ C_{2}H_{5} \\ \hline \\ C_{3}H_{5} \\ \hline \\ C_{4}H_{5} \\ \hline \\ C_{5}H_{5} \\ \hline \\ C_{5}H_{5$$

Hence, the migratory group must always be electron rich, ie, migratory aptitude t-butyl > 2° alkyl > 1° alkyl

620 **(b)**

When some activating group, eg, -OH is present along with -COOH is ortho or para position, substitution occurs with respect to -OH preferably at para-position due to steric factors. In case the reagent used is strong, electrophile enters at all possible positions even with the replacement of -COOH group

$$CH_3COOH + N_3H \rightarrow CH_3NH_2 + N_2 + CO_2$$

623 (a)

Following is the example of Knoevengel reaction, which is shown by aldehydes and ketones

HC=O + H₂C COOR Pipridine COOH HC COOH
$$\frac{1}{1}$$
 HC COOH $\frac{1}{1}$ HC COOH $\frac{1}{1}$ COOH

625 (b)

When an acid is heated with Br_2 in presence of P, α –H atom of the acid is replaced by bromine atom. This reaction is called Hell-Volhard Zelinsky reaction. NH_2^- is a better nucleophile than Br^- .

$$RCH_{2}COOH \xrightarrow{Br_{2}/P} R \longrightarrow CH \longrightarrow COOH$$

$$RCH_{2}COOH \xrightarrow{Br} R \longrightarrow CH \longrightarrow COOH$$

$$RCH_{2}COOH \longrightarrow R$$

$$R \longrightarrow R \longrightarrow CH \longrightarrow COOH$$

$$R \longrightarrow R \longrightarrow R$$

$$R \longrightarrow R \longrightarrow R \longrightarrow R$$

$$R \longrightarrow R \longrightarrow R \longrightarrow R$$

$$R \longrightarrow$$

626 (d)

With Fehling's solution, benzaldehyde as well as acetone do not react while with Tollen's reagent, benzaldehyde gives precipitate but acetone done not react. Hence, Tollen's reagent is used to distinguish them.

628 (a)

As - CH $_3$ group has a strong +I effect and - OCH $_3$ group has a weak -I but strong +R effect, hence they increase the electron density on oxygen atom and O - H bond becomes stronger. On the other hand, -NO $_2$ group has a strong -I and -R effect. It withdraws electrons from benzene ring as well as oxygen atom of - OH group and proton is easily removed. Order of esterification is I > II > III > IV

631 **(c)**

The N_2 evolved during the process is measured at desired P and T.

632 (c)

CLICK HERE >>

 ${
m CH_3COCH_3}$ gives red colour with sodium nitroprusside solution but does not reduce Tollen's reagent. Acetone yields chloroform with NaOH/Cl₂

 $\begin{array}{c} \mathrm{CH_3COCH_3} + \mathrm{Cl_2} \ \to \mathrm{Cl_3C} - \mathrm{COCH_3} \xrightarrow{\mathrm{NaOH}} \mathrm{CHCl_3} \\ \mathrm{Acetone} \\ \mathrm{chloroform} \end{array}$

633 (d)

The effect of electron-withdrawing substituent in the benzene ring fastens the Cannizaro reaction

634 **(b)**

First find % of H by = $\frac{2 \times \text{wt. of H}_2 \times 100}{\text{wt. of compound} \times 18}$

Find percentage of C = 100-percentage of H

635 (c)

No doubt the reaction involves the synthesis of chiral centre, however; the stereosphecity cannot be controlled and both the enantiomers are formed to give a racemic mixture.

636 (d)

The order of reactivity of acid derivatives is as $R\text{COCl} > (R\text{CO})_2\text{O} > R\text{COOR}' > R\text{CONH}_2$ Hence, acetyl chloride is the most reactive among these.

637 (a)

$$CH_3CONH_2 \xrightarrow{HOH} CH_3COOH$$

638 **(b)**

Addition of HCN to a carbonyl compound is a nucleophilic addition reaction. $-NO_2$ group being electron withdrawing increases the polarity (or electron deficiency) of carbonyl carbon and thus, makes the C=O group of benzaldehyde more reactive towards HCN.

640 (c)

$$CH_2=CH_2 + PdCl_2 + H_2O \xrightarrow{CuCl_2} CH_3CHO + Pd + 2HCl$$
; This is Wacker method.

642 (b)

Meq. of NH₃ formed =
$$29 \times \frac{1}{5}$$
;
Wt. of NH₃ = $\frac{29}{5} \times \frac{17}{1000}$ g
 \therefore Wt. of N₂ in NH₃ = $\frac{14}{17} \times \frac{29 \times 17}{5 \times 1000}$ g
 \therefore % of N = $\frac{14 \times 29 \times 17 \times 100}{17 \times 5 \times 1000 \times 0.5} = 16.24$

643 (b

Benzamide undergoes Hofmann-bromamide reaction with Br₂/KOH to give aniline. This aniline give paracetamol (antipyretic drug) with acetic anhydride.

644 (c)

$$CH_3COOC_2H_5 + H_2O \longrightarrow CH_3COOH + C_2H_5OH$$
(X)

paracetamol

645 **(b)**

On oxidation, secondary alcohol produces ketone with same number of carbon atom and on further oxidation ketone produces an acid with a lesser number of carbon atoms

CH₃-CH-OH
$$\stackrel{[O]}{\longrightarrow}$$
 CH₃-C=O
CH₃

$$\downarrow [O]$$
CH₃COOH

647 (a)

HCHO is gas at room temperature.

648 (c)

Beilstein test (or Cu wire test of halogens) is also given by some other compounds such as urea, thio urea, etc.

649 (c)

Proton donors are acids. Electrons withdrawing groups increase acidity. More the number of electrons withdrawing groups more will be acidity. Closer the electrons withdrawing group to proton more will be acidity.

∴ Cl₂CHCOOH, has highest acidity among CH₃COOH, ClCH₂COOH, Cl₂CHCOOH, Cl₂CHCOOH, Cl₂CHCOOH

650 **(c)**

$$RCH_2NH_2 + HONO \rightarrow RCH_2OH + N_2 + H_2O$$

651 (d)

The intermediate formed during Hofmann's bromamide reaction is *RCH*₂—N=C=O. Follow mechanism of the reaction.

652 (c)

Rosenmund's reaction.

653 (d)

Solubility of organic compounds in water decreases with mol. wt. due to increasing hydrophobic character of alkyl or aryl gps.

655 (a)

Formation of α , β -unsaturated carboxylic acid by the action of acetic anhydride and sodium acetate on aromatic aldehyde as Perkin reaction. The other Perkin like condensation involve condensation of aromatic aldehyde and αhydrogen containing compound

$$\begin{array}{c|c} CH_2(COOEt)_2 & C_2H_5O \\ \hline \\ CH_2(COOEt)_2 & CH(COOEt)_2 \\ \hline \\ CH-CH(COOEt)_2 \\ \hline \\ CH-CH(COOEt)_2 \\ \hline \\ CH-CH(COOEt)_2 \\ \hline \\ OH \\ \hline \\ OH \\ \hline \end{array}$$

656 (d)

LiAlH₄ is used for converting -COOH to -

657 (c)

$$H_3C$$
 C=CHOH + [O] $\frac{\text{Acidified}}{K_2\text{Cr}_2\text{O}_7}$ H_3C c=O secondary alcohol (X) acetone

Ketone (i.e., acetone reacts with phenyl hydrazine but does not give silver mirror test.)

659 (c)

Given vapour density of $CH_4 = 1$, i. e., 8 = 1.

660 (b)

Aldol condensation takes place as

$$\begin{array}{c}
 CH_{3} \\
 H_{3}C-C-HC=C-CH_{2}OH \\
 CH_{3} CH_{3}
\end{array}$$

664 (c)

It absorbs only CO2.

$$CH_3COOH \xrightarrow{Cl_2/Red P} CH_2CICOOH$$

α - chloroacetic acid

This reaction is called Hell-Volhard-Zelinsky reaction.

667 (c)

If two liquids have a difference in their b. p. $\approx 5^{\circ}$ C, a fractionating column is used in distillation assembly. The lower b. p. liquid comes down when it passes through fractionating column.

668 (d)

Ni formate is better catalyst than Ni for hydrogenation of oils.

669 (b)

Carbon + xyl = Carboxyl.

671 (c)

The following is the reaction

672 (a)

$$\begin{array}{c} \text{CH}_3 - \text{COCl} + \text{H}_2 \xrightarrow{\text{Pd.BaSO}_4} \text{CH}_3\text{CHO} + \text{HCl} \\ \text{acetyl chloride} & \text{acetaldehyde} \end{array}$$

This reaction is called Rosenmund's reaction.

675 (c)

o-hydroxy benzoic acid contain intramolecular hydrogen bonding

677 (d)

 $CH_3COCH_3 + Cl_2 \rightarrow CCl_3COCH_3$; chlorine attacks α-H-atoms of carbonyl compounds.

$$CH_3COOCH_3 \xrightarrow{LiAH_4} CH_3CH_2OH + CH_3OH$$

C₆H₅COOH reacts with sodium bicarbonate but phenol not.

685 (a)

Acetophenone burns with sooty flame due to aromatic nature.

686 (a)

Only ethyl acetate undergoes reduction with LiAlH₄ to give only ethyl alcohol, other esters given in option on reduction gives a mixture of alcohols.

$$CH_3COOCH_2CH_3 + 2H_2 \xrightarrow{LiAlH_4} 2CH_3CH_2OH$$

687 (a)

 $CH_3CONH_2 \xrightarrow{HNO_2} CH_3COOH + H_2O + N_2$; the function of HNO2 is to convert -NH2gp. to -OH gp.

688 (b)

$$\begin{array}{c} \mathsf{CH_3COOC_2H_5} + \mathsf{CH_3COOC_2H_5} \\ \xrightarrow{C_2H_5\mathsf{ONa}} \mathsf{CH_3CO.CH_2COOC_2H_5} \\ + \mathsf{C_2H_5OH} \end{array}$$

689 (c)

Calcium acetate on distillation produce acetone.

691 (d)

See the influence of -IF of Cl and F-atoms.

692 (b)

Ethyl benzoate hydrolyses to give benzoic acid and ethanol in the presence of aqueous acid (H₂SO₄) or aqueous base (NaOH). In both cases the reaction is bimolecular and it is the C-Obond between the acyl group and oxygen that is cleaved

$$\begin{array}{c|c}
O \\
C \\
-OCH_2CH_3
\end{array}$$

$$\begin{array}{c}
O \\
C \\
-OH \\
+ CH_3CH_2OH
\end{array}$$

Formaldehyde and acetaldehyde react to different manner towards NH3.

$$6HCHO + 4NH_3 \rightarrow (CH_2)_6N_4$$

$$CH_3CHO + NH_3 \longrightarrow CH_3CH \bigcirc NH_2$$

695 (b)

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O.$$

The volume ratio is 1:2; Thus, 20 mL of CH₄ will react with 40 mL of O2.

696 (b)

Two molecules of acetaldehyde gives aldol on aldol condensation.

697 (b)

Tartaric acid reduces Tollen's reagent.

698 (a)

Trioxane or trioxyl methylene is a white solid polymer (m. p. 62°C) formed when HCHO gas is allowed to stand at room temperature.

699 (c)

Hydrocarbons are oxidised to aldehydes because only these two are present in atmosphere.

701 (d)

NH4CNO is inorganic compound.

702 (a)

Organic compound + conc. HNO₃ + magnesia. mixture \rightarrow Mg₂P₂O₇ as precipitate.

705 (a)

Aldehydes and ketones with NH2. NH2 forms hydrazones.

$$RCHO + H_2N.NH_2 \rightarrow RCH = N.NH_2 + H_2O$$

alde. hydrazone

$$R_2CO + H_2N.NH_2 \rightarrow R_2C = N.NH_2 + H_2O$$

706 (b)

Only steam volatile liquids are purified by steam distillation, e.g., aniline, nitrobenzene, benzaldehyde, essential oils, etc.

707 (a)

Aqueous NaCl is neutral hence there is no reaction between ethyl acetate and aqueous NaCl.

708 (c)

 $2 \times 78 \text{ g C}_6\text{H}_6$ requires 15×22.4 litre 0_2 .

710 (b)

The characteristic property of periodic acid is the oxidative cleavage of bonds with adjacent oxidisable group such as 1, 2-diols, α -hydroxy carbonyl, 1,2-diketones, etc. The reagent does not react with 1, 3- or 1, 4-diols or carbonyl compounds

714 (b)

Crotonaldehyde is CH3.CH=CH.CHO.

715 (c)

Removal of CO2 from carboxylic acid is called decarboxylation.

716 (c)

The acid with 3 carbon atoms.

717 (c)

Oxalic acid is oxidized as,

$$COOH$$
 \longrightarrow $2CO_2 + H_2O$

Tartaric acid oxidizes as:

Formic acid oxidizes as;

$$HCOOH \xrightarrow{[O]} H_2O + CO_2$$

Thus, all are used as reducing agent.

719 (a)

$$RCOOH + Na \rightarrow RCOONa + \frac{1}{2} H_2$$

720 (b)

 ${
m HCOOH\ reacts\ with\ NaHCO_3\ giving\ out}$ effervescences of ${
m CO_2}$. Note that HCOOH is also strong reducing agent.

721 (a)

$$CH_3COCH_3 + OC$$
 CH_3
 $Ba(OH)_2$
 CH_3COCH_2C
 CH_3
 CH_3

This is diacetone alcohol.

722 (c)

723 (c)

% Relative no. of atoms ratio

Simplest

C 40
$$\frac{40}{12} = 3.33$$

$$\frac{3.33}{2.32} =$$

H
$$13.33 \frac{^{12}}{^{133.33}} = 13.33$$

$$\frac{13.33}{3.33} = 4$$

N
$$46.67 \frac{46.67}{14} = 3.33$$

$$\frac{3.33}{3.33} = 1$$

724 (d)

All are facts.

725 (c)

 $CH_3COOH + NH_3$

$$\begin{array}{c} \longrightarrow \text{CH}_3\text{COONH}_4 \stackrel{\Delta}{\rightarrow} \text{CH}_3\text{CONH}_2 \\ \stackrel{\text{P}_2\text{O}_5}{\longrightarrow} \text{CH}_2\text{CN} \end{array}$$

 ${
m CH_3CN}$ is ethane nitrile or acetonitrile or methyl cyanide.

728 (a)

The acidic order is: $CICH_2COOH > CH_3COOH > C_6H_5OH > C_2H_5OH$.

733 (d)

-NO₂ group at any position shows electron withdrawing effect, thus acid strength is increased. But *o*-nitro benzoic acid believed to have *ortho* effect. As a result, resonance gets prevented. Hence, its acid strength is maximum, thus, the order of acid strength

(II) < (III) < (IV) < (I)

(The effect is more at para position than meta.)

734 (d)

Benzaldehyde on reaction with alc.KNC undergo condensation reaction to give benzoin.

0

$$2C_6H_5CHO \xrightarrow{KCN(alc.)} C_6H_5 - CHOH - C - C_6H_5$$
henzoin

736 (c)

$$CH_3CH_2CHO \xrightarrow{[O]} CH_3CH_2COOH$$

737 **(b**

Acetaldehyde shows addition reaction; whereas ketone shows condensation with NH₃.

738 (a)

When benzaldehyde is heated with acetic anhydride in the presence of sodium acetate, condensation product is obtained which on hydrolysis give α,β —unsaturated acid (such as cinnamic acid) and the reaction is known as Perkin's reaction.

C₆H₅CHO + H₂CHCOOCOCH₃ benzaldehyde acetic anhydride

$$CH_3COONa$$
 C_6H_5CH
 $CHCOO$
 $COCH_5$
 $COCH_5$
 CH_3COOH
 C_6H_5CH
 $CHCOOH$
 $Cinnamic acid$
 CH_3COOH
 C

739 (d)

% of N =
$$\frac{28 \times 224 \times 100}{22400 \times 1.18}$$
 = 23.72

740 (c)

 $-\mathrm{OH}$ is more activating than $-\mathrm{CH}_3$ in o, p directing thus $-\mathrm{CHO}$ goes to ortho w.r.t., $-\mathrm{OH}$ group.

741 (c)

This is iodoform reaction.

742 (a)

$$CO + H_2 \xrightarrow{arc} HCHO$$

$$CH_4 + O_2 \xrightarrow{MoO} HCHO + H_2O$$

743 (d)

It forms hydrazone thus, carbonyl compound; gives +ve iodoform test thus has $\mathrm{CH_3}$ — CO —or $\mathrm{CH_3}$ CHOH— unit. Gives Wolff-Kishner's reaction to form isobutane thus compound is 3-methyl butan-2-one.

$$\begin{tabular}{l} $\mathsf{CH}_3\mathsf{COCHCH}_3 \xrightarrow{\mathsf{Red}} \mathsf{CH}_3\mathsf{CH}_2\mathsf{CHCH}_3 \\ & \mathsf{CH}_3 & \mathsf{CH}_3 \end{tabular}$$

744 (d)

The reaction is nucleophilic addition-elimination reaction

$$\begin{array}{c|c} H & HH \\ \downarrow_{\mathcal{S}^+} & \downarrow \\ R-C & +: N-NH_2 \\ \downarrow & \downarrow \\ O^{-} & H \end{array}$$

$$\begin{array}{c|c} H & H & H & H \\ \hline R-C & N-NH_2 \longrightarrow R-C-N-NH_2 \\ \oplus \vdots \vdots & H & OH \end{array}$$

$$\xrightarrow{\text{-H}_2\text{O}}$$
 R —CH=N—NH₂

745 (b)

Pd - CaCO₃ + BaSO₄ is called Lindlar's catalyst.

746 (c)

As Cannizaro reaction is shown by aldehydes lacking α -hydrogen, hence the combination CH $_3$ CHO + HCHO is not possible

$$\begin{array}{c} C_6H_5CHO + HCHO \xrightarrow{NaOH} C_6H_5CH_2OH \\ + HCOO^-Na^+ \\ CHO & \xrightarrow{NaOH} CH_2OH \\ CHO & \xrightarrow{C} COO^- \end{array}$$

747 (a)

 $CH_3COCH_3 \xrightarrow{Cl_2} CCl_3. COCH_3;$

Halogen attacks α -carbon atom.

748 (b)

$$2C_6H_5CHO \xrightarrow[\text{Cannizaro's}]{\text{NaOH}} C_6H_5CH_2OH + C_6H_5COONa$$

This reaction is given by aldehydes which doesn't have α -hydrogen atom.

749 (a)

Acetone (CH_3COCH_3) and propanal (CH_3CH_2CHO) have same molecular formula C_3H_6O and are functional isomers.

750 (d)

To remove SO_2 ; which will otherwise be absorbed in lime water.

751 (d)

 $\rm H_2SO_4$ acts as protonating (catalyst) agent as well as dehydrating agent.

752 **(b)**

Molecular formula of $A = C_2Cl_3OH$ As (A) reduces Fehling's solution and on oxidation gives a monocarboxylic acid (B). It means (A) must be an aldehyde. CCl_3CHO

(A)

This is further confirmed by the reaction C_2H_5OH

+
$$\text{Cl}_2 \xrightarrow{\text{[O]}} \text{CH}_3\text{CHO} \xrightarrow{\text{Cl}_2} \text{CCl}_3\text{CHO}$$

 $A = \text{Chloral [CCl}_3\text{CHO]}$

753 (a)

Glycine is NH₂CH₂COOH.

754 (d)

Aldehydes having α —H-atoms undergoes aldol condensation in the presence of dil.NaOH and yield β —hydroxy aldehydes.

$$CH_{3}CHO + CH_{3}CHO \xrightarrow{\text{NaOH}} CH_{3}CH. CH_{2}CHO$$

$$3-\text{hydroxy butanal}$$

755 (a)

The carboxylic and terminal methyl groups in even carbon atom acids lie on opposite side to provide more close packing in crystal lattice which provide higher m.p.

757 (b)

Nucleophiles that are relatively weak bases such as CN^- , $\mathrm{RNH_2}$ and X^- give conjugate addition, whereas strong bases such as $R-\mathrm{Li}$, $R-\mathrm{Mg}-\mathrm{X}$ give direct addition.

758 (c)

$$CH_3COOC_2H_5 \xrightarrow{HOH} CH_3COOH + C_2H_5OH$$

759 **(b**)

Aldehydes and ketones containing α -hydrogen atom undergo self condensation in the presence of dilute alkali to form β —hydroxy aldehyde or β —hydroxy ketone. This reaction is called aldol condensation.

760 (d)

Meq. of acid = Meq. of NaOH
$$\frac{0.14}{E} \times 1000 = 12.5 \times 0.1$$

$$E = 112$$

761 (c)

Lower aldehydes have pungent odour.

762 **(b)**

 ${
m CH_3COOH}$ (acetic acid) cannot reduce Fehling solution while HCOOH, HCHO and ${
m CH_3CHO}$ reduce Fehling solution.

763 (a)

It is Cannizzaro's reaction shown by aldehydes lacking with $\alpha\text{-H-atom}.$

764 (b)

$$C_6H_5CHO + CH_3CHO \xrightarrow{Alkali} C_6H_5CH=CHCHO$$

Cinnamaldehyde

This is claisen condensation.

765 (c)

As benezoic condensation is the reaction of aromatic aldehydes, but phenyl ethanal is an aryl substituted aliphatic aldehydes. Hence, it could not show benzoin condensation

766 (a)

When acetaldehyde is heated with Fehling solution, a red precipitate of Cu_2O is obtained, $CH_3CHO+2Cu(OH)_2+NaOH$

 \rightarrow CH₃. COONa + Cu₂O \downarrow +3H₂O

red

768 **(b)**

Perkin reaction is the condensation reaction in which aromatic aldehyde is heated with an anhydride of an aliphatic acid in the presence of sodium salt of the same acid to form α, β —unsaturated acid.

benzaldehyde acetic anhydride
$$\beta$$
 a CH=CH·COOH

CH₃COOH + CH₃COONa

cinnamic acid

769 (c)

 $C = O \leftrightarrow C - O$ the +ve *IE* of alkyl groups decreases +ve charge on C^+ centre more effectively in ketones. Also, steric hindrance caused by bulky groups for nucleophiles to attack C^+ centre.

770 **(b)**

$$2CH_3COCl + R_2Cd \rightarrow 2CH_3COR + CdCl_2$$

7/1 (a

As the compound having active hydrogen produces alkane on reaction with Grignard

reagent, hence – H atom of hydroxyl group is replaced by methyl magnetism iodine

$$IMg \begin{tabular}{|c|c|c|c|}\hline $CH_3 + H$ O & & \\\hline & &$$

772 (b)

A compound that contains a $-CH_2 - or - CH$ —group flanked by two electron-withdrawing group such as C=O group, becomes acidic compound and hydrogen atoms are called acidic hydrogen

contains no acidic hydrogen

$$CH_3-CH_2-C-CH_2-C-CH_3$$
 \longrightarrow 2,4-hexanedione

contains 2 acidic hydrogen

contains no acidic hydrogen

$$CH_3-CH_2-CH_2-C-C-CH_3 \longrightarrow$$
 2,3-hexanedione

contains no acidic hydrogen

773 (a)

 β —hydroxy aldehydes or β —hydroxy ketones (*i. e.*,aldol) readily dehydrated under acidic condition to give $\alpha - \beta$ —unsaturated aldehyde or ketone.

776 (c)

Group or atom attached with – COOH group shows negative inductive effect, makes the acid stronger or acid has larger dissociation constant. – Br shows poor negative inductive effect and also far away from – COOH, which makes BrCH₂CH₂COOH weakest acid and hence, it has smallest dissociation constant.

777 (d)

It is an use of salol.

778 (d)

NaH₂PO₄ does not react with carbonyl compounds.

780 (a)

The compound is acetophenone

$$\begin{array}{c} C_{6}H_{5} \\ CH_{3} \\ C$$

781 (a)

Aqueous NaCl is neutral hence, there is no reaction between ethyl acetate and aqueous NaCl $CH_3COOC_2H_5 + NaCl(aq) \rightarrow No$ reaction

782 (c)

The reaction is known as Gattermann-Koch reaction.

785 (b)

In highly acidic medium, NH₂OH forms salts with acidic molecule and loses its capacity to act as nucleophile.

786 (a)

CH3CHOHCH2CHO is aldol.

787 (d)

is a hemiacetal.

789 (b)

Ketone and aldehyde can be distinguished by Tollen's reagent, Fehling's solution and Schiff's

CH₃COCH₃ (ketone) and CH₃CH₂CHO(aldehyde) can be distinguised by Tollen's

reagent.CH3CH2CHO reacts with Tollen's reagent to give silver mirror while CH3COCH3 does not

$$CH_3CH_2CHO + Ag_2O \xrightarrow{\Delta} CH_3CH_2COOH + 2Ag$$
Silver

$$CH_3COCH_3 + Ag_2O \xrightarrow{\Delta} No reaction$$

790 (a)

HCOOH and CH₃CH₂COOH.

791 (a)

Para nitrophenol has higher b. p. due to Hbonding.

792 (c)

$$\begin{array}{c} \mathrm{CH_3CN} \xrightarrow{\mathrm{Na/C_2H_5OH}} \mathrm{CH_3CH_2NH_2} \xrightarrow{\mathrm{HNO_2}} \mathrm{CH_3CH_2OH} \\ \xrightarrow{[O]} \mathrm{CH_3COOH} \end{array}$$

793 (c)

Urea $(NH_2 - CO - NH_2)$ can be use for all types of 807 (d) crops and soil. It is hazardous hence can be store easily and it is cheap as it can be manufactured from crude nephthalein. After assimilation of urea by plants through the interaction of nitrifying bacteria, it leaves behind only carbon di oxide in the soil.

795 (b)

Acetophenone is hypnotic agent and called hypnone in medicinal use.

799 (a)

The alkaline hydrolysis of ester is irreversible whereas, acid hydrolysis of ester is reversible.

$$\begin{aligned} & \text{CH}_3\text{COOC}_2\text{H}_5 + \text{H}_2\text{O} \xrightarrow{\text{H}^+} \text{CH}_3\text{COOH} + \text{C}_2\text{H}_5\text{OH} \\ & \text{CH}_3\text{COOC}_2\text{H}_5 + \text{NaOH} \xrightarrow{\text{OH}^-} \text{CH}_3\text{COONa} + \text{C}_2\text{H}_5\text{OH} \end{aligned}$$

800 (d)

When ammonia (NH₃) reacts with formaldehyde (HCHO), hexamethylenetetramine which is also known as urotropine, is formed. Urotropine is used as a medicine to treat urinary infections. 6НСНО $4NH_3 \rightarrow (CH_2)_6N_4 + 6H_2O$ formaldehyde ammonia urotropine

801 (c)

Generally soda-lime removes CO2 from an acid but in case of alkali formate it gives alkali carbonate and hydrogen.

$$HCOONa + NaOH \xrightarrow{CaO} Na_2CO_3 + H_2$$

802 (c)

2, 4-D or 2, 4-dichlorophenoxy acetic acid is used as a herbicide.

803 (b)

This is claisen condensation.

804 (d)

$$C_2H_2 + H_2O \xrightarrow{40\% H_2SO_4} CH_3CHO$$

acetaldehyde

Acetaldehyde + Fehling's solution $\xrightarrow{\Delta}$ Cuprous (Red ppt.)

806 (b)

Aldehydes lacking with α-H atom undergoes Cannizzaro's reaction; in Cannizzaro's reaction one molecule of such aldehydes is oxidized on the cost of other.

The acidity of halogenated acid increases almost proportionately with the increase in electronegativity of the halogen present. Therefore, the correct order is $FCH_2COOH > ClCH_2COOH > BrCH_2COOH$ > CH₃COOH

808 (b)

Ellution means separation of process.

809 (c)

Pyroligneous acid obtained by destructive distillation of wood contains ~10% acetic acid, ~ 2 - 2.5% methanol and $\sim 0.5\%$ acetone.

811 (a)

It is like the saponification reaction of esters.

813 (b)

Alcohols on reacting with Grignard reagent (RMgX) give hydrocarbon on hydrolysis, hence the compound 'A' cannot be an alcohol as the product is a oxygen containing compound. The compound 'A' must be propanal. The reaction will be as fallows

$$\begin{array}{c|c} \text{HCH}_2\text{CH}_3\text{C=O} + \text{CH}_3\text{CH}_2\text{MgBr} & \\ \hline & \text{CH}_2\text{CH}_3 \\ & \\ & \text{CH}_3\text{CH}_2\text{CH} & \\ \hline & \text{OMgBr} \\ & \\ & &$$

816 (a)

$$CH_3CH_2 \cdot CH_2OH \xrightarrow{K_2Cr_2O_7/H_2SO_4}$$

Thus, (B) is aldehyde and (A) is primary alcohol. $CH_3CH_2CHO + H_2N.NHCONH_2 \longrightarrow$

818 (a)

It is a laboratory method of the preparation of benzaldehyde.

821 (c)

Secondary alcohols can be conveniently oxidized to ketones without any danger of being further oxidized to acids or oxidation occurring at the end of double bond by **Oppanauer oxidation**

824 (a)

Cl₂reacts with CH₃CHO, CH₃COCH₃ and C₆H₅CHO t respectively.

825 (b)

HCOOH $\xrightarrow{P_2O_5}$ H₂O + CO (burns with pale blue flame).

826 (b)

Methanal and phenol (or hydorxy benzene) gives Bakelite polymer on polymerization.

827 (a)

$$CH_3CH_2COOH \longrightarrow CH_3CHBr \cdot COOH \xrightarrow{Br_2/P} CH_3 - C - COOH$$

This is Hell-Volhard-Zelinsky reaction.

828 (a)

Cannizzaro's reaction is shown by aldehydes lacking α -H-atom.

Condensation reactions are shown by aldehydes having α -H-atoms.

829 (c)

Collin's reagent (CrO_3 -pyridine) converts 2° alcohol to ketone and 1° alcohol to aldehyde.

832 (b)

Ring 1 is more active, electrophilic shbstitution takes place over ring.1.

- NH − C − Ph is *ortho para* directing. *Para* product is predominating.

0

833 (b)

The Reformatsky reaction is the reaction between an α -bromo acid ester and carbonyl compound (aldehyde or ketone) in the presence of Zn to form a β -hydroxy ester.

$$R'\text{CHBrCOO}R'' + \underbrace{\overset{\text{CH}_3}{\text{CH}_3}}_{\text{CH}_3} \text{CO} \xrightarrow{Z_n} \underbrace{\overset{\text{CH}_3}{\text{CH}_3}}_{\text{CH}_3} \text{C(OH)CH}R'\text{COO}R''$$

835 (c)

$$RCH_3 \xrightarrow{[O]} RCH_2OH \xrightarrow{[O]} RCHO \xrightarrow{[O]} RCOOH$$

837 (c)

The reduction of carboxylic acids to alcohols is carried out by ${\rm LiAlH_4}$ and boranes (BH $_3$ or B $_2$ H $_6$) in THF

839 (a)

Amides on acidic hydrolysis give acid and an amine. Hence, N-dimethylacetamide will give acetic acid and dimethyl amine on hydrolysis.

840 (c)

Cannizaro reaction It is given by aldehydes which do not have α —hydrogen atom. Half of the molecules are oxidised and half are reduced in presence of base.

842 (d)

It is a characteristic of acetamide.

843 (d)

No reaction.

844 (b)

$$CH_3CHO \xrightarrow{Na/C_2H_5OH} CH_3CH_2OH$$

845 (c)

Oxalic acid is reduced by Zn and H₂SO₄ to give glycolic acid

COOH
$$+4[H]$$
 \xrightarrow{Zn} $+4[H]$ $\xrightarrow{CH_2OH}$ $+H_2O$ COOH oxalic acid glycolic acid

846 (a)

Only compounds having – C — are reduced to alcohol using NaBH₄in ethanolic solution.

∴They are reduced to alcohols by reaction with ethanolic NaBH₄solution.

0 ||

 $\therefore \, R - O - R \ does \ not \ have - \mathcal{C} - group.$

 \therefore It cannot be reduced to alcohol by alcoholic solution of NaBH₄.

847 (d)

Carboxylic acid is converted into its anhydride by using phosphorus pentaoxide.

2RCOOH
$$P_2O_5$$
 OCR OCR OCR acid anhydride

848 (b)

$$\text{HCOONH}_4 \xrightarrow{\Delta} \text{HCONH}_2 + \text{H}_2\text{O}$$

849 (b)

Calcium salts of carboxylic acid on heating give carbonyl compound.

$$(a)(HCOO)_2Ca + (CH_3CH_2COO)_2Ca$$

Calcium formate calcium propanoate

$$0$$

$$||$$

$$\rightarrow 2CH_3CH_2C - H + 2CaCO_3$$

propanal

$$(b)(CH_3COO)_2Ca + (CH_3CH_2COO)_2Ca$$

Calcium acetate calcium propanoate

o II

$$\rightarrow 2\mathrm{CH}_3 - \mathrm{C} - \mathrm{CH}_2 - \mathrm{CH}_3 + 2\mathrm{CaCO}_3$$

2-butanone

(c)(CH₃COO)₂Ca + (CH₃COO)₂Ca Calcium acetate calcium acetate

O

|| $\rightarrow 2CH_3 - C - CH_3 + 2CaCO_3$

acetone

$$(d)(HCOO)_2Ca + (CH_3COO)_2Ca$$

Calcium formate calcium acetate

$$0\\ ||\\ \rightarrow 2CH_3 - C - H + 2CaCO_3$$

ethanal

850 (d)

Rest all show elimination of carbonylic oxygen.

851 (c)

Fenton's reagent $FeSO_4 + H_2O_2$ as well as Tollen's reagent give pyruvic acid.

853 (c)

Urotropine is hexamethylene tetramine, i.e., $(CH_2)_6N_4$, used as medicine for gout and urine infections.

854 **(b)**

$$\frac{\text{Wt. of B}_2\text{H}_2\text{PtCl}_6}{2 B + 410} = \frac{\text{Wt. of Pt}}{195}$$

$$\therefore \frac{0.75}{2 B + 410} = \frac{0.245}{195}$$

$$B = 93.5$$

Eq. wt. of base = 93; since it is monoacidic.

 \therefore Mol. wt. of base = 93.5 \times 1 = 93.5

855 (d)

Mandelic acid C₆H₅CHOHCOOH is aromatic hydrox

857 (b)

Halogen attacks α -carbon atom of acid in presence of I_2 or P (HVZ reaction).

859 (d)

$${\rm CH_3COCH_3,CH_3CH_2CHO,\,CH_3\,CHCH_2}$$

$${\rm CH_2=CHCH_2OH,CH_2}$$

$${\rm =CHOCH_3}$$

860 (a)

Percentage of N =
$$\frac{28 \times V \times 100}{22400 \times W}$$

862 (d)

Cannizaro reaction takes place as,

863 (a)

(CH₃)₂CHCHO shows both reactions, *i. e.*, aldol condensation and Cannizzaro's reaction.

864 (a)

Formaldehyde reacts with methyl magnesium bromide to give a addition product which ethanol on hydrolys

865 (b)

Stronger acids possess low pK_a value.

866 (b)

Clemmensen's reduction.

867 (d)

$$\begin{array}{c} \text{CH}_{3}\text{COOH} \xrightarrow{\text{CaCo}_{3}} (\text{CH}_{3}\text{COO})_{2}\text{Ca} \\ \xrightarrow{'A'} \\ \xrightarrow{-\text{CaCo}_{3}} (\text{CH}_{3})_{2}\text{CO} \xrightarrow{\text{NH}_{2}\text{OH}} (\text{CH}_{3})_{2}\text{C} = \text{NOH} \end{array}$$

acetoxime

868 (c)

869 (c)

This reaction is an example of Perkin's reaction because in it α , β -unsaturated acid is obtained with aromatic aldehydes.

Therefore, (X) is acetic anhydride i.e., $(CH_3CO_2)O$.

871 (d)

$$CH_4 \xrightarrow{[O]} H_2O + CO$$

872 **(b)**

Ethyl acetate is obtained when methyl magnesium bromide reacts with ethyl chloroformate.

$$CI + BrMgH_3C - C - O - C_2H_5$$

$$CI - C - O - C_2H_5$$

$$CI - C - O - C_2H_5$$

$$CH_3$$

$$CH_4$$

$$CH_3$$

$$CH_4$$

$$CH_5$$

874 (a)

It is an example of crossed Cannizaro's reaction.

Reduction of ketone to corresponding alkane using Zn/HCl is called Clemmensen reduction.

$$3CH_3COOH + PCl_3 \rightarrow 3CH_3COCI + H_3PO_3$$

879 (d)

Acetamide reacts with HNO2 to give acetic acid and nitrogen gas

 $CH_3CONH_2 + HNO_2 \rightarrow CH_3COOH + H_2O + N_2$ acetamide

881 (b)

The self condensation of acetaldehyde in presence of dilute alkalies is called aldol condensation and the product is known as aldol.

882 (b) R—C=0; 3σ -bonds on carbon of —CHO.

884 (c)

Amides are reduced by lithium aluminium hydride (LiAl H_4) or sodium and ethyl alcohol into 895 (c) primary amines.

$$H_2CH_3C$$
 — C — $NH_2 + 4[H]$ — $LiAlH_4$ — propanamide

 $CH_3CH_2CH_2NH_2 + H_2O$

886 (a)

In presence of sodium hydroxide, benzaldehyde reacts with acetophenone, to give phenyl cinnamate.

$$C_6H_5CHO + CH_3COC_6H_5 \xrightarrow{NaOH(aq)}$$
 O

 $C_6H_5CH = CH - C - C_6H_5$

888 (d)

Cannizaro reaction is given by only those aldehydes and ketones in which α -H atom is

Formaldehyde (HCHO)and benzaldehyde (C_6H_5CHO) both due to the absence of α -H atom undergo Cannizaro reaction.

889 (a)

In this reaction α -H is replaced by chlorine.

$$\begin{array}{c} \operatorname{CH_3COOH} + \operatorname{Cl_2} \stackrel{p}{\longrightarrow} \operatorname{CH_2COOH} + \operatorname{HCl} \\ | \\ \operatorname{Cl} \end{array}$$

This reaction is called the Hell-Volhard-Zelinsky reaction.

890 (d)

Presence of NO₂ gp. makes it best hydride donor.

Aldehydes form white crystalline solid with NaHSO3.

893 (b)

$$CH_3CHO + HCH_2COCH_3 \xrightarrow{NaOH} CH_3CH(OH)CH_2COCH_3 + CH_3CH(OH)CH_2CHO$$
major

$$+(CH_3)_2C(OH)CH_2COCH_3 \\ +(CH_3)_2C(OH) - CH_2CHO$$

$$CH_3CH(OH)CH_2COCH_3 \xrightarrow{\Delta} CH_3CH = CHCOCH_3$$
major product major
product(25%)

894 (b)

$$2CH_3COCl + (CH_3)_2Cd \rightarrow 2CH_3COCH_3 + CdCl_2$$

Picric acid doesn't contain -COOH group. It is 2, 4, 6 trinitrophenol.

$$O_2N$$
 NO_2
 NO_2

897 (c)

$$Organic\ compound + CaO + Na_2CO_3\ \frac{Heat\ in}{a\ Pt\ crucible}$$

Cool the solution and add dil. HNO3 and then AgNO₃. A precipitate of AgX is dried and weighed and the % of halogen is obtained as usual. This is Schiffs and Piria method.

898 (a)

See the influence of -IE of Cl-atom. The negative charge on carboxy late ion is dispersed more in presence of two Cl-atoms.

The IE order F > Cl > Br > I.

899 (a)

Any electron withdrawing group increases the acidity due to -/effect. The -/effect of chlorine is greater than phenyl group. Hence, CICH2COOH is the most acidic compound among these.

900 (c)

Molecular formula = integer \times empirical formula.

Carboxylic acids when treated with either diborane or LAH, get reduced to primary alcohols. Diborane is a better reagent than LAH for such conversion, as it does not affect other functional groups such as ester, intro, holo etc.

$$R - COOH + B_2H_6 \xrightarrow{H_3O^+} R - CH_2OH$$

902 (b)

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{-CCI}_2\text{-CH}_3 \xrightarrow{\text{Hydrolysis}} \text{CH}_3\text{-CH}_2\text{-C} \xrightarrow{\text{OH}} \\ \text{OH} \\ \xrightarrow{\text{-H}_2\text{O}} \text{CH}_3\text{-CH}_2\text{-C} \xrightarrow{\text{C}} \text{CH}_3 \\ & 0 \\ \\ & 0 \\ \end{array}$$

(Remember! Only methyl ketones give iodoform test.)

903 (d)

Iodine in presence of base is used to detect presence of CH₃CO group in compound.

O
$$| |$$
 H $-$ C $-$ H $+$ I $_2$ $+$ NaOH \rightarrow No reaction formaldehyde

O
$$|I|$$
 $CH_3 - C - H + I_2 + NaOH \rightarrow CHI_3$
acetaldehyde yellow ppt.
 \therefore Formaldehyde and acetaldehyde are

distinguished by using I2 and base.

906 (d)

Acetaldehyde reduces Tollen's reagent and itself is oxidised to acetic acid.

$$CH_3CHO + Ag_2O \rightarrow CH_3COOH + 2Ag \downarrow$$

909 (a)

Ascorbic acid (C₆H₈O₆) is called vitamin C, found in citrus fruits.

910 (c)

$$C_6H_5COCH_3 \xrightarrow{Cl_2} C_6H_5COCH_2Cl$$
Tear gas

911 (c)

$$\begin{array}{c} \text{CH}_3\text{CONH}_2 \xrightarrow{\text{HOH}} \text{CH}_3\text{COOH} + \text{NH}_3 \\ \xrightarrow{\text{Nessler's reagent}} & \text{a test for NH}_3. \end{array}$$

912 (b)

$$CH_3COOH + PCl_5 \rightarrow CH_3COCI$$

COCH₃

$$C_6H_6$$

$$Anhy.AlCl_3$$

$$(i) C_2H_5MgBr$$

$$(ii) Ether hydrolysis$$

$$H_3C$$

$$(C)$$

$$OH$$

915 (a)

Notice + IE of alkyl group which intensifies the ve charge on carboxylate ion and thus, makes it more reactive. The acid therefore becomes more stable.

916 (d)

Baeyer-Villiger oxidation involves transformation of a ketone into ester by reaction with a peracid. The net change is the insertion of an oxygen atom between the carbonyl carbon and an adjacent carbon of the ketone. So, it is an example of Baeyer-Villiger oxidation, the most suitable reagent is m-chloroperbenzoic acid

917 (c)

Aldol condensation, haloform reaction and knovengel reaction involve the formation of a resonance stabilised anion, while the Wittig reaction involves the addition of a nucleophile on the carbonyl carbon. The driving force for the Wittig reaction is the formation of a very strong P - O bond

918 (d)

Better is leaving gp, higher will be reactivity of acyl compound towards nucleophile acyl substitution. Weaker is the base, better is leaving gp. Stronger is base, weaker is its acid and viceversa.

922 (c)

Presence of electron withdrawing atom (-X)increases the acidic nature. Presence of electron repelling gp. (-CH₃) decreases the acidic nature.

923 (c)

CH₃CH₂CHO → CH₃CH₂COOH

924 (d)

All aldehydes give silver mirror with Tollen's reagent.

925 (c)

Organic compound + $CuO \rightarrow CO_2$ will come out if carbon is present.

926 (b)

As compared to alcohol, the O-H bond in carboxylic acids is more strongly polarised due to the adjacent electron withdrawing carbonyl group. Therefore carboxylic acid from stronger intermolecular H-bonds than alcohols, and the boiling points of carboxylic acids are much higher than those of alcohol of comparable molecular masses

927 (c)

Addition of HCN is nucleophilic addition. Greater the electron deficiency of carbonyl group higher the rate of reaction.

Hence.

928 (d)

Benzaldehyde when heated with ethanolic KCN, it gives α —hydroxy ketone, benzoin.

$$\begin{array}{c} O\\ ||\\ C_6H_5CHO+H-C-C_6H_5 \xrightarrow{Alc.KCN} \end{array}$$

Benzaldehyde (2 mol)

0

П

 $C_6H_5CH(OH)C - C_6H_5$

benzoin

929 (c)

Gastric juice has pH \approx 2.5; lemon juice and pepsi cola have pH \approx 7. Human blood has pH 7.2.

931 (b)

The reagent Ni/H2 reduces double bond and

932 (a)

In Meerwein-Ponndorff-Verley reduction, the carbonyl compound is heated with aluminium *iso*-propoxide in *iso*-propanol solution, it gets reduced to alcohol. The *iso*-propoxide is oxidized to acetone, which is removed from the equilibrium mixture by slow distillation

$$\begin{array}{c} O \\ + H_3C \\ + H_3C \end{array} CH - OH \xrightarrow{\left[(CH_3)_2CO \right]_3} Al \\ \end{array} \begin{array}{c} OH \\ - (CH_3)_2CO \\ - (CH$$

934 (d)

$$C = 0 \xrightarrow{\text{Zn - Hg/HCl}} CH_2 + H_2C$$
carbonyl
compound

Carbonyl compounds can be converted into hydrocarbons by treating with zinc-amalgam/HCl (Clemmensen's reduction).

935 **(b)**

Cannizzaro's reaction is shown by aldehydes lacking with α -H-atom.

936 (c)

In the presence of base, cyclohexanone show aldol condensation

937 (a)

Magenta is rosaniline hydrochloride which is decolourised by H_2SO_3 to give Schiff's reagent.

938 (b)

Propanal is not formed during the dry distillation of a mixture of calcium formate and calcium acetate.

$$\begin{split} (\text{HCOO})_2\text{Ca} & \xrightarrow{\text{Dry distillation}} \text{HCHO} + \text{CaCO}_3 \\ (\text{CH}_3\text{COO})_2\text{Ca} & \xrightarrow{\Delta} \text{CH}_3\text{COCH}_3 + \text{CaCO}_3 \\ (\text{HCOO})_2\text{Ca} + (\text{CH}_3\text{COO})_2\text{Ca} & \xrightarrow{\Delta} \text{2CH}_3\text{CHO} \\ & + 2\text{CaCO}_3 \end{split}$$

939 (b)

 $RCOOH + N_3H \xrightarrow{Conc H_2SO_4} RNH_2 + CO_2N_2$ hydrazoic acid primary amine It is Schmidt reaction.

941 (b)

Ketones on reduction with LiAIH4 gives secondary alcohol.

$$\begin{array}{c} O \\ C - CH_3 \\ + 2[H] \\ \hline \end{array} \begin{array}{c} OH \\ CH - CH_3 \\ \end{array}$$

942 (a)

Petrol, kerosene, diesel, etc., have difference in their b. p. of more than 50°C.

943 (c)

Halogen attacks α-carbon of carboxylic acid. This is HVZ reaction.

944 (b)

Aldol condensation is shown by the molecules having α-carbon atom

$$CH_3-CH+CH_3CHO \xrightarrow{NaOH} CH_3-CH-CH_2CHO$$

$$0$$

$$0$$

$$0$$

$$0$$

945 (d)

CH3CONH2 on treatment with metallic sodium produce hydrogen.

$$CH_3CONH_2 + Na \rightarrow CH_3CONH^-Na^+ + \frac{1}{2}H_2 \uparrow$$

946 (b)

More is the tendency for H-bonding, more will be boiling point. In carboxylic acid H-bonding is more than alcohols.

$$CH_3CONH_2 \xrightarrow{P_2O_5,\Delta} CH_3CN$$
Acetamide ethane mitrile

949 (a)

This is Hofmann's bromamide reaction.

950 **(b)**

An aqueous solution of sodium periodate and a trace of potassium permanganate is known as Lemieux reagent. The alkene is oxidized to cisdiol, which is cleaved by periodate to aldehydes and/or ketones. Aldehydes are further oxidized by KMnO4to acids

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} - \text{C} = \text{CH} - \text{CH}_{3} \\ \end{array} \xrightarrow{\text{NaIO}_{4}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} - \text{C} \\ \text{OH} \end{array} \xrightarrow{\text{CH} - \text{CH}_{3}} \\ \begin{array}{c} \text{CH} - \text{CH}_{3} \\ \text{OH} \end{array} \xrightarrow{\text{CH}_{3} - \text{C}} \\ \text{CH}_{3} - \text{C} = \text{O} + \text{CH}_{3} \text{CHO} \end{array}$$

This is better for both determining the position of double bond and for preparing carbonyl compounds, because in this method, formaldehyde is usually obtained from terminal alkene, instead of producing CO2 and water

951 (a)

Alkali used is Ba(OH)2.

954 (c)

Among the carbonyl compounds, the reactivity decreases with increase in number of alkyl group and size of alkyl group because the positive charge on the carbon atom decreases due to +Ieffect of alkyl groups.

Thus, the correct order reactivity is HCHO > CH₃CHO > C₆H₅CHO

955 (b)

Reaction proceeds as CH2COOC2H5 CH2CH2OH + C2H5OH (B) (mol. formula (X) $C_2H_6O)$ (mol. formula (mol. formula

$$\begin{array}{cccc} C_{11}H_{14}O_2) & C_9H_{12}O) \\ & & -H_2O & H_2SO_4 \\ \hline COOH & CH=CH_2 \\ \hline HCOOH + & & & \\ \hline COOH & CH_3 \\ \hline terephthalic acid & (C) \\ \end{array}$$

957 (c)

Waxes are esters of higher fatty acids RCOOR'.

(mol. formula C9H10)

958 (b)

O is more electronegative than C.

961 (d)

The formation of canary yellow precipitate with am. molybdate confirms the presence of P of As or both due to the formation of (NH₄)₃ PO₄. $12\text{MoO}_3 \text{ or } (\text{NH}_4)_3 \text{ As } O_4 \cdot 12\text{MoO}_3.$

964 (c)

 $NH_2CH_2COOH \rightleftharpoons NH_3^+CH_2COO^-$

965 (a)

 ${\rm CH_3CHO}$ and ${\rm CH_3COCH_3}$ forms condensation product with ${\rm NH_3}$.

968 (a)

Toluene can be oxidized to benzaldehyde with a solution of chromyl chloride

 (CrO_2Cl_2) in CS_2 or CCl_4 . This is known as Etard reaction

Further oxidation of benzaldehyde to benzoic acid is avoided by protection of carbonyl group

969 (c)

The Hell-Volhard-Zelinsky reaction is used for preparing α -halo acid.

$$CH_3 - CH_2 - COOH \xrightarrow{Cl_2/P} CH_3 - CH - COOH$$

$$|$$

$$CI$$

∝-chloropropanoic acid

970 (a)

This is Rosenmund's reaction.

971 (d)

 $CH_3OH \xrightarrow{Cu} HCHO \xrightarrow{NaOH} HCOONa + HCH_2OH;$ Cannizzaro's reaction.

972 (a)

$$CH_3CHO + H_2NOH \rightarrow CH_3CH=NOH + H_2O$$

973 (b)

The addition of α , β -unsaturated carbonyl compound, with conjugated diene is called Diel's-Alder reaction.

974 (d)

The given statement is of Cannizzaro's reaction.

976 **(c**)

Follow applications of inductive effect. The negative charge on carboxylate ion is dispersed more due to -IE of F-atom.

The carboxylate ion thus becomes more stable and acid more active.

980 (d)

Cannizaro reaction aldehydes which does not have α —hydrogen atom undergo disproporation reaction (half of the molecule are oxidised and half are reduced).

∴Benzaldehyde is converted into benzyl alcohol by Cannizaro reaction.

981 (c)

$$\bigcup_{\substack{\stackrel{|\overline{o}|\\ -CH_3}\\+2}}$$

Thus, oxidation number of carbonyl carbon in acetophenone is +2.

982 (a)

$$CH_3COOH + NH_2CONH_2$$

$$\rightarrow$$
 CH₃CONH₂ + CO₂ + NH₃

983 (d)

$$C_6H_5CHO \xrightarrow{Cl_2} C_6H_5COCI$$

984 (b)

$$Na + C + N \xrightarrow{Fusion} NaCN.$$

986 (d)

It attacks acidic H (H attached on N, O, F) to show acylating nature.

987 (b)

Stinges of bees and wasps contain formic acid.

988 (c)

$$NaNO_2 + HCl \rightarrow HNO_2 + NaCL$$

$$H_2NCONH_2 + HNO_2 \rightarrow CO_2 + NH_3 + H_2O + N_2$$

CO2 gas evolves with brisk effervescence

989 (a)

$$C_2H_5OH \stackrel{[0]}{\rightarrow} CH_3CHO \stackrel{[0]}{\rightarrow} CH_3COOH$$

991 (a)

Benzaldehyde reacts with ammonia to form hydrobenzamide.

992 (d)

RCHO or RCOR can be reduced t RCH₂OH or RCHOHR respectively by H₂ + catalyst, LiAlH₄, NaBH₄,etc.

993 (d)

$$RCOOR' \xrightarrow{\text{NaOH}} RCOONa + R'OH$$

994 (d)

The Gattermann-Koch aldehyde synthesis is as

995 (c)

Carboxylic acids are weak acids.

997 (a)

PCl₅, PCl₃, SOCl₂ are used in organic reactions to replace —OH group or to replace carbonylic oxygen.

998 (b)

$$C = O + H_2NNHC_6H_5 \rightarrow C=N\cdot NHC_6H_5$$

999 (c)

$$\begin{array}{ccc} \text{CH}_2\text{OH} & \text{CH}_2\text{OH} \\ | & | \\ \text{CHOH} + \text{H}_2\text{C}_2\text{O}_4 \longrightarrow \text{CHOH} + \text{HCOOH} + \text{CO}_2 \\ | & | \\ \text{CH}_2\text{OH} & \text{CH}_2\text{OH} \end{array}$$

The intermediate formed decomposes to give glycerol back and formic acid.

100 (d)

Benedict solution is readily reduced by aldehyde. It doesn't oxidise anhydrides.

100 (d)

7-9% dilute solution of acetic acid is known as

Vinegar can be obtained by the fermentation of ethyl alcohol in the presence of enzyme acetobactor.

100 (a)

2 $CH_3COOH + NH_3 \rightarrow CH_3COONH_4$

100 **(b)**

Unlike KMnO₄ acid Jone's reagent (K₂Cr₂O₇ + H_2SO_4) does not attack C=C.

4
 CH₃CHO $\stackrel{PCl_{5}}{\longrightarrow}$ CH₃CHCl₂

100 (c)

5 Transesterification is the process of conversion of one ester to another ester.

$$R \longrightarrow C \longrightarrow OR' + R'' \longrightarrow OH \longrightarrow Reflux$$

$$R \longrightarrow C \longrightarrow OR'' + R' OH$$

$$CH_3COOC_4H_9 + C_2H_5OH \longrightarrow Reflux$$

$$n\text{-butyl acetate}$$

$$CH_3COOC_2H_5 + C_4H_9OH$$

$$ethyl acetate$$

100 (a)

The formation of aldehyde from alkyl cyanide takes place by Stephen's reaction

$$R-C$$
≡N + 2H alkyl cyanide $\frac{SnCl_2}{+HCl}$ RCH=NH. HCl aldimine hydrochloride H_2O

100 (d)

PCl₅ usually used to replace — OH gp. or oxygen of 7

aldehyde

100 (c)

Fehling's solution is produced by mixing two solutions. Fehling (A) containing alkaline CuSO₄ and Fehling (B) NaKC₄H₆O₈ or sod. pot. tartrate.

101 (c)

The compound which contains - COCH₃ group in its structure, give positive iodoform test and the compound which contains - CHO group give positive Fehling test.

In ethanal, CH3CHO both the groups are present, hence it responds to both iodoform test and Fehling's test.

$$\begin{aligned} \text{CH}_3\text{CHO} + \text{I}_2 + \text{NaOH} &\rightarrow \text{CHI}_3 + \text{NaI} + \text{H}_2\text{O} \\ &\quad \text{iodoform} \\ \text{CH}_3\text{CHO} + \text{Cu(OH)}_2 &\rightarrow \text{CH}_3\text{COOH} + \text{Cu}_2\text{O} \\ &\quad \downarrow + 2\text{H}_2\text{O} \\ \text{Fehling's} &\quad \text{red ppt.} \end{aligned}$$

Solution

red ppt.

101 (b)

$$P_{\text{mixture}} = P_{\text{compound}} + P_{\text{steam}} = 1 \text{ atm (at b. p.)}$$

101 (a)

Two —COOH gp. on one carbon atom gives CO2 on heating . Two -COOH gp. on adjacent carbon atoms lose H2O to give anhydride on heating

$$| \xrightarrow{\text{COOH}} \Delta \text{CO}_2 + \text{H}_2\text{O} + \text{CO}; \text{CH}_2$$

$$\triangle$$
 CH₃COOH; $|$ CH₂COOH \triangle CH₂CO CH₂CO

101 (b)

7 The nitrogen of an organic compound is quantitatively converted to (NH₄)₂SO₄ on heating with H₂SO₄.

101 (a)

8 Propionic acid and KOH reacts to produce potassium propionate.

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{COOH} \xrightarrow{\text{KOH}} \text{CH}_3\text{CH}_2\text{COOK} + \text{H}_2\text{O} \\ \text{Propionic acid} & \text{pot. propionate} \end{array}$$

102 **(b)**

Benzamide on treatment with POCl₃ gives benzonitrile (phenyl cyanide) because in this reaction POCl₃ acts as dehydrating agent and on dehydration of benzamide, benzonitrile is obtained.

102 (c)

Both have nearly same boiling point (HCOOH=100.5°C;H₂O =100°C).

102 (b)

2
$$3$$
NaCNS + FeCl₃ \rightarrow Fe(CNS)₃ + 3NaCl (Red)

102 (c)

4 The compound is pentanone-3

$$CH_3-CH_2-CH_2-CH_3 \xrightarrow{H_2NNHC_6H_5}$$

$$CH_3$$
 — CH_2 — CH_2 — CH_3 — CH_3 no iodoform test

102 (d)

5 An exceptional aldehyde which does not reduce Fehling's solution.

102 (c)

6 Oxidation of 2-butanol to ethyl methyl ketone can be made effective by using oxidizing agent PCC/DCM (pyridinium chlorochromate in dichloro methane)

$$\begin{array}{c} \text{CH}_3\text{-}\text{CH}_2\text{-}\text{CH-}\text{OH} \xrightarrow{\text{PCC}} \text{CH}_3\text{-}\text{CH}_3\text{-}\text{CH}_2\text{-}\text{C}\text{-}\text{CH}_3 \\ \text{CH}_3 \end{array}$$

102 (a)

7 The reaction occurs as follows

$$C_6H_5COOC_2H_5 + KOH \xrightarrow{\Delta} C_6H_5COOK + C_2H_5OH$$

ethyl benzoate
 $C_6H_5COOK + HCl \rightarrow C_6H_5COOH + KCl$
white solid

102 (c)

8 Al₂O₃ is used as absorbent, the other absorbents at powder, animal charcoal, etc.

102 (d)

9 The monocarboxylic acids are called fatty acids, because some of the higher members were obtained from fats. The general formula is $C_nH_{2n+1}COOH$ or RCOOH or $C_nH_{2n}O_2$.

103 (b)

1 Cis-dioic acid readily gives anhydride on heating. Since maleic acid is a dioic acid gives maleic anhydride readily.

103 (c)

103 (c)

4 BrCH₂CH₂COOH is the weakest acid and have lowest dissociation constant –*IE* of Br is lesser than F and is far away from —COOH group.

103 **(c)**

Acid amides are least reactive towards nucleophile amongst the all acid derivatives because of electron deficiency of the acyl carbon due to – *I* effect of the – NH₂ group. In other way, lone pair of electrons undergoes resonance with

O
$$\parallel$$
 $-C$ —group as
$$C = \begin{pmatrix} O & O & + \\ R - C - NH_2 & \longleftrightarrow R - C = NH_2 \end{pmatrix}$$

It is because of this alkanamides are amphoteric in nature

103 (c)

8 Maleic and fumaric acid are geometrical isomers (*cis*- and *trans*-respectively) having different physical properties but almost same chemical nature.

9
$$3$$
NaCNS + FeCl₃ \rightarrow Fe(CNS)₃ + NaCl Red colour

104 (d)

1 HCHO and CH₃CHO give different reaction with NH₃

$$6$$
HCHO + 4 NH $_3 \longrightarrow (CH_2)_6N_4 + 6H_2O$
urotropine

$$CH_3CHO + NH_3 \longrightarrow \begin{array}{c} CH_3 \\ H \end{array} \begin{array}{c} OH \\ NH_2 \end{array}$$

acetaldehyde ammonia

alkyl cyanide carboxylic acid

104 (d)

Formic acid HCOOH also contain a – CHO group, so gives some reducing properties of aldehydes HC = O 3 aldehyde group

OH

Formic acid is a very strong reducing agent. It reduces Tollen's reagent, Fehling's solution and mercruric chloride.

Acetic acid does not give these reaction.

Formic acid distinguishes from acetic acid by
Fehling's solution. Formic acid gives red ppt of
cuprous oxide with Fehling's solution while acetic
acid does not.

104 (c)

5 Oxalic acid is prepared by the acidic hydrolysis of cyanogen.

$$C = N$$
 H_2O/H^+
 $COOH$
 $COOH$
 $COOH$
 $COOH$
 $COOH$

104 (b)

6 Urea on show heating gives biuret.

$$H_2N.CONH.H + H_2N CONH_2 \triangle$$

104 (a)

7 Beckmann rearrangement oximes on treatment with catalysts such as conc.H₂SO₄ undergo rearrangement to form substituted amide.

$$\begin{array}{c|c} C_6H_5 & C\\ & \\ & \\ & \\ N \end{array} \begin{array}{c} COnc.H_2SO_4 \\ \hline & \\ H_2O \end{array} \begin{array}{c} O\\ \\ \\ H_3C-C-NHC_6H_5\\ acetanilide \end{array}$$

anti-phenyl acetophenone oxime

104 (c)

8 Ethylene glycol is used to protect the carbonyl group of cyclopentanone

104 (c)

9 These are characteristics of C₆H₅CHO.

105 (a)

- X forms 2, 4-DNP derivatives, it shows that it is a carbonyl compound (>C=0).
 - It reduces Tollen's reagent, it shows that it has an aldehyde group.
 - 3. It undergoes Cannizaro reaction, that also shows the presence of an aldehyde having no α -hydrogen.
 - On vigorous oxidation, it produces 1, 2benzenedicarboxylic acid. It shows that groups are present at 1,2-position on benzene ring.

Thus, the correct structure of the compound *X* is

105 (a)

4 Two H-atoms of alkane are replaced by O.

105 (d

 $\begin{array}{ccc} 5 & \operatorname{CH_3CN} \xrightarrow{H_2O} \operatorname{CH_3COOH} \xrightarrow{\operatorname{NH_3}} \operatorname{CH_3COONH_4} \\ \xrightarrow{\Delta} \operatorname{CH_3CONH_2} + \operatorname{H_2O} \end{array}$

105 (d)

Formic acid has —C—H (aldehyde) group. It reduces Tollens reagent to silver mirror like other aldehydes

105 (d)

8 By $NH_2 - NH_2/C_2H_5ONa$

Aldehyde and ketones are reduced with hydrazine $\mathrm{NH_2} - \mathrm{NH_2}$ and $\mathrm{C_2H_5ONa}$ to give hydrocarbon (paraffins). This reaction is called Wolff-Kishner reaction.

$$-\mathsf{CHO} \xrightarrow[\mathsf{C_2H_5ONa}]{\mathsf{NH_2-NH_2}} -\mathsf{CH_3} - \mathsf{CO} \xrightarrow[\mathsf{C_2H_5ONa}]{\mathsf{NH_2-NH_2}} - \mathsf{CH_2} -$$

105 (a)

9 $CO + NaOH \xrightarrow{High P,T} HCOONa \xrightarrow{NaHSO_4} HCOOH + Na_2SO_4$

106 (c)

0 $CH_3CHOHCH_3 \xrightarrow{[O]} CH_3COCH_3$

106 (c)

2 6-8 % solution of acetic acid is called vinegar.

106 (d)

3 See the influence of – *IE* of Cl-atom. The negative charge on carboxylate ion is dispersed more in presence of two Cl-atoms.

107 **(b)**
0
$$CH_3$$
 $C=O \rightarrow CH_3$
 $C+OH_3$
 $C+OH_3$
 CH_3
 CH_3
 $C+OH_3$
 CH_3
 CH_3

C+ is more reactive than O-.

107 (a)

 $(CH_3CO)_2O \xrightarrow{NH_3} 2CH_3CONH_2 + H_2O$

107 (c)

6 CH₃CHO, CH₃CH₂CHO and CD₃CHO each possess α-H/D atom and will show aldol condensation.

107 (c)

13.5 g = 9 g C = 1 g H = 3.5 g N

$$\therefore 100 g = \frac{9 \times 100}{13.5} g C = \frac{1 \times 100}{13.5} g H = \frac{3.5 \times 100}{13.5} g N$$

106 (b)

5 C₆H₅COOH sublimes on heating.

106 (a

6 Tollen's reagent is [Ag(NH₃)₂]NO₃.

106 (a)

 $8 ext{NH}_2^-$ withdraws acidic H from active methylene group of $CICH_2COOC_2H_5$ and it combines with $C_6H_5COCH_3$ to form intermediate that undergoes intramolecular cyclisation

$$NaNH_2 +H-CHCOOCH_2CH_3 \longrightarrow NH_3$$
 CI
 $+ CHCOOC_2H_5 + Na^+$

$$\begin{array}{c|c} CH_3 & CH_3 & CH_5 \\ \hline \\ C=0 & CH_3 & CH_5 \\ \hline \\ CH_5 & C$$

106 (a)

$$9 CH \equiv CH \xrightarrow{HgSO_4} CH_3CHO$$

acetaldehyde

$$[A]$$

$$\xrightarrow{\text{Dil}} \text{CH}_3 - \text{CH} - \text{CH}_2 - \text{CHO}$$

$$[\text{aldol condensation}]$$

$$|$$

$$\text{OH}$$

$$\text{aldol}$$

[*B*] This reaction is followed by acidic oxidation and aldol condensation respectively.

$$\equiv \frac{9 \times 100}{13.5 \times 12} \text{ mole C} = \frac{1 \times 100}{13.5 \times 1} \text{ mole H}$$
$$= \frac{3.5 \times 100}{13.5 \times 14} \text{ mole N}$$

107 (c)

8 It gives acid; R— $CN \xrightarrow{HOH} RCOOH$.

 \therefore Mol. formula = $C_6H_8N_2$

107 (b)

9 The slowest step is the transfer of hydride ion to the carbonyl group as shown in mechanism.

$$\begin{array}{c} Ph-C=O+OH \xrightarrow{\bullet} Ph-C=O \\ \downarrow \\ H & OH \\ \end{array}$$

$$\begin{array}{c} H \\ OH \\ Ph-C=O+Ph-C=O \\ \downarrow \\ OH \\ \end{array} \rightarrow Ph-C=O \\ \downarrow \\ OH \\ \end{array} \rightarrow Ph-C=O \\ \downarrow \\ OH \\ \end{array}$$

$$\begin{array}{c} H \\ OH \\ \downarrow \\ OH \\ \end{array} \rightarrow Ph-C=O \\ \downarrow \\ OH \\ \end{array} \rightarrow Ph-C=O \\ \downarrow \\ OH \\ \end{array}$$

$$\begin{array}{c} H \\ OH \\ OH \\ \downarrow \\ OH \\ \end{array} \rightarrow Ph-C=O \\ \downarrow \\ OH \\ \end{array}$$

$$\begin{array}{c} H \\ OH \\ OH \\ \downarrow \\ OH \\ \end{array}$$

$$\begin{array}{c} H \\ OH \\ OH \\ \downarrow \\ OH \\ \end{array}$$

$$\begin{array}{c} H \\ OH \\ OH \\ \downarrow \\ OH \\ \end{array}$$

$$\begin{array}{c} H \\ OH \\ OH \\ \end{array}$$

108 (a)

This is the required order based on ortho-effect and electron withdrawing nature of - NO2 group.

108 (b)

PCl3, PCl5 and SOCl2 are used to replace -OH group of an alcohol or an acid by -Cl group

When acid reacts with Cl2 in presence of red phosphorus, ∝-chloro acid is obtained. (Hell-Vohlard-Zelinsky reaction).

$$\begin{array}{c} & \text{Cl} \\ \mid \\ \text{CH}_3\text{CH}_2\text{COOH} + \text{Cl}_2 \xrightarrow{\text{Red P}} \text{CH}_3\text{CHCOOH} + \text{HCl} \\ & \propto \text{-chloropropionic} \end{array}$$

acid

108 (d)

Fractional distillation of petroleum produces a large number of compounds.

108 (b)

Aldol condensation aldehydes containing α -hydrogen undergo self addition in presence of a base to form products called 'aldols'. The reaction is called 'aldol condensation'.

Example Two molecules of acetaldehyde combine with each other in presence of dil. NaOH to form 3-hydroxybutanal.

$$\begin{array}{c} \text{OH} \\ | \\ \text{CH}_3\text{CHO} + \text{HCH}_2\text{CHO} \xrightarrow{\text{OH}^-} \text{CH}_3 - \text{CH} - \text{CH}_2 \\ - \text{CHO} \end{array}$$

hydroxybutanal

(aldol)

108 (c)

Aldehydes are reduced by LiAIH4 to alcohols and alcohols are oxidised by copper to give aldehydes.

$$CH_3CHO \xrightarrow{LiAIH_4} CH_3CH_2OH \xrightarrow{Cu} CH_3CHO$$

108 (c)

5 This is Cannizzaro's reaction.

Methyl ketones (acetone) and acetaldehyde both give indoform test.

0
||
$$CH_3CH/R + 3I_2 + 4NaOH$$

0
|| $\rightarrow CHI_3 + H/R - C - ONa + 3NaI + 3H_2O$

108 (b)

When acetaldehyde is treated with aqueous sodium hydroxide solution, it sundergoes aldol condensation (because of the presence of α -H atom) as.

$$\begin{array}{c} \text{CH}_3\text{CHO} + \text{HCH}_2\text{CHO} \xrightarrow{\text{Dil.aqueous}} \text{CH}_3\text{CH} \\ * \\ = \text{CHCHO} \xleftarrow{\Delta} \text{CH}_3\text{CH(OH)CH}_2\text{CHO} \\ \text{(shows geometrical isomerism)} \\ \text{aldol} \\ \text{(shows optical isomerism)} \end{array}$$

108 (d)

-NO₂ group at any position shows electron withdrawing effect. Thus, acid strength is increased. But o-nitro benzoate ion is stabilised by intramolecular H-bonding like forces. Hence its acid strength is maximum.

Thus, the order of acid strength is (II) > (III) > (IV) > (I).

108 (d)

Cyclohexylamines are more basic than aniline; the later shows resonance.

109 (a)

Rosenmund reaction,

$$\begin{array}{c|c}
O & O & O \\
C - CI & C - H \\
\hline
O &$$

So, compound (A) is benzoyl chloride.

109 (b)

Grignard reagent produce carboxylic acid on reaction with CO2 $CH_3MgBr + CO_2$

$$\rightarrow$$
 CH₃COOMgBr $\xrightarrow{\text{H}_2\text{O}}$ CH₃COOH
+ Mg(OH)Br

109 (c)

It is the reason why organic compounds studied as separate branch.

109 (d)

Fruity smell is the characteristic property of ester, thus reaction can be considered as follows

109 (a)

7
$$CH_3CH_2OH \xrightarrow{[O]} CH_3CHO$$

